The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples, despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted.
Impurities can reduce the toxic potential of cristobalite and may help explain the low reactivity of some cristobalite-rich dusts. Whilst further work is required to determine if these effects translate to altered pathogenesis, the results have potential implications for the regulation of crystalline silica exposures.
BackgroundDiatomaceous earth (DE) is mined globally and is potentially of occupational respiratory health concern due to the high crystalline silica content in processed material. DE toxicity, in terms of variability related to global source and processing technique, is poorly understood. This study addresses this variability using physicochemical characterisation and in vitro toxicology assays.MethodsNineteen DE samples sourced from around the world, comprising unprocessed, calcined and flux-calcined DE, were analysed for chemical and mineral composition, particle size and morphology, and surface area. The potential toxicity of DE was assessed by its haemolytic capacity, and its ability to induce cytotoxicity or cytokine release by J774 macrophages.ResultsThe potential toxicity of DE varied with source and processing technique, ranging from non-reactive to as cytotoxic and haemolytic as DQ12. Crystalline silica-rich, flux-calcined samples were all unreactive, regardless of source. The potential toxicity of unprocessed and calcined samples was variable, and did not correlate with crystalline silica content. Calcium-rich phases, iron content, amorphous material, particle size and morphology all appeared to play a role in sample reactivity. An increased surface area was linked to an increased reactivity in vitro for some sample types.ConclusionsOverall, no single property of DE could be linked to its potential toxicity, but crystalline silica content was not a dominant factor. Occlusion of the potentially toxic crystalline silica surface by an amorphous matrix or other minerals and impurities in the crystal structure are suggested to pacify toxicity in these samples. In vivo verification is required, but these data suggest that crystalline silica content alone is not a sufficient indicator of the potential DE hazard.Electronic supplementary materialThe online version of this article (doi:10.1186/s12995-015-0064-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.