Studies of the respiratory health effects of different types of volcanic ash have been undertaken only in the last 40 years, and mostly since the eruption of Mt. St. Helens in 1980. This review of all published clinical, epidemiological and toxicological studies, and other work known to the authors up to and including 2005, highlights the sparseness of studies on acute health effects after eruptions and the complexity of evaluating the long-term health risk (silicosis, non-specific pneumoconiosis and chronic obstructive pulmonary disease) in populations from prolonged exposure to ash due to persistent eruptive activity. The acute and chronic health effects of volcanic ash depend upon particle size (particularly the proportion of respirable-sized material), mineralogical composition (including the crystalline silica content) and the physicochemical properties of the surfaces of the ash particles, all of which vary between volcanoes and even eruptions of the same volcano, but adequate information on these key characteristics is not reported for most eruptions. The incidence of acute respiratory symptoms (e.g. asthma, bronchitis) varies greatly after ashfalls, from very few, if any, reported cases to population outbreaks of asthma. The studies are inadequate for excluding increases in acute respiratory mortality after eruptions. Individuals with preexisting lung disease, including asthma, can be at increased risk of their symptoms being exacerbated after falls of fine ash. A comprehensive risk assessment, including toxicological studies, to determine the long-term risk of silicosis from chronic exposure to volcanic ash, has been undertaken only in the eruptions of Mt. St. Helens (1980), USA, and Soufrière Hills, Montserrat (1995 onwards). In the Soufrière Hills eruption, a long-term silicosis hazard has been identified and sufficient exposure and toxicological information obtained to make a probabilistic risk assessment for the development of silicosis in outdoor workers and the general population. A more systematic approach to multi-disciplinary studies in future eruptions is recommended, including establishing an archive of ash samples and a website containing health advice for the public, together with scientific and medical study guidelines for volcanologists and health-care workers.
This research investigates whether audit committees are associated with improved earnings quality for a sample of Australian listed companies prior to the introduction of mandatory audit committee requirements in 2003. Two measures of earnings quality are used based on models first developed by Jones (1991) and Dechow and Dichev (2002).Our results indicate that formation of an audit committee reduces intentional earnings management but not accrual estimation errors. We also find differences in the associations between audit committee accounting expertise and the two earnings quality measures. Other audit committee characteristics examined are not significantly related to either earnings quality measure.
Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated by a resurgent caldera. The great majority of past eruptions have been explosive, variable in magnitude, intensity, and in their vent locations. In this hazard assessment study we present a probabilistic analysis using a variety of volcanological data sets to map the background spatial probability of vent opening conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution of faults and surface fractures as being representative of areas of crustal weakness. One of our key objectives was to incorporate some of the main sources of epistemic uncertainty about the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for certain important model parameters and allowing outcomes from different expert weighting models to be evaluated. Results indicate that past vent locations are the most informative factors governing the probabilities of vent opening, followed by the locations of faults and then fractures. Our vent opening probability maps highlight the presence of a sizeable region in the central eastern part of the caldera where the likelihood of new vent opening per kilometer squared is about 6 times higher than the baseline value for the whole caldera. While these probability values have substantial uncertainties associated with them, our findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei caldera.
Abstract. Plinian and subplinian volcanic eruptions can be accompanied by tephra falls which may last hours or days, posing threats to people, buildings and economic activity. Numerous historical examples exist of tephra damage and tephra casualties. The mechanisms and consequences of roof collapse from static tephra load are an important area of tephra damage requiring more research.This paper contributes to this work by estimating the structural vulnerability of buildings to tephra load based on both analytical studies and observed damage. New studies are presented of roof strengths in the area around Mt. Vesuvius in southern Italy and of field surveys undertaken in other European volcanic locations to assess building vulnerability to tephra fall.The results are a proposed set of new European tephra fall roof vulnerability curves in areas potentially threatened by explosive volcanic eruptions along with comments on the human casualty implications of roof collapse under tephra loading. Some mitigation recommendations are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.