This paper presents research on a prediction method of surface roughness in the hole turning process of 3X13 steel. The experimental matrix was designed by using the Central Composite Design (CCD) with four input parameters including cutting speed, feed rate, cutting depth, and tool nose radius. Using the response surface method (RSM), a quadratic polynomial model was proposed to predict the surface roughness. Besides, another method that was used to predict surface roughness was the Support Vector Machine (SVM) algorithm. Using SVM, the predicted surface roughness was more accurate than that one when predicting surface roughness using RSM method. Using RSM, the mean absolute error and mean square error between experimental and expect results were 13.37 % and 3.93 %, respectively. While, using SVM, these values were only 2.80 % and 0.17 %, respectively. The SVM can be used to improve the prediction accuracy of surface roughness in hole turning process of 3X13 steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.