Spin dependent tunneling (SDT) wafers were deposited using dc magnetron sputtering. SDT junctions were patterned and connected with one layer of metal lines using photolithography techniques. These junctions have a typical stack structure of Si(100)CrMnPt with the antiferromagnet CrMnPt layers for pinning at the top. High-resolution transmission electron microscopy (HRTEM) reveals that the CoFeB has an amorphous structure and a smooth interface with the Al 2 O 3 tunnel barrier. Although it is difficult to pin the amorphous CoFeB directly from the top, the use of a synthetic antiferromagnet (SAF) pinned layer structure allows sufficient rigidity of the reference CoFeB layer. The tunnel junctions were annealed at 250 C for 1 h and tested for magneto-transport properties with tunnel magnetoresistive (TMR) values as high as 70.4% at room temperature, which is the highest value ever reported for such a sandwich structure. This TMR value translates to a spin polarization of 51% for CoFeB, which is likely to be higher at lower temperatures. These junctions also have a low coercivity (Hc) and a low parallel coupling field (Hcoupl). The combination of a high TMR, a low Hc, and a low Hcoupl is ideal for magnetic field sensor applications.
The potential advantage of some magnetic sensors having a large response is greatly decreased because of the 1 / f noise. We are developing a device, the microelectromechanical system ͑MEMS͒ flux concentrator, that will mitigate the effect of this 1 / f noise. It does this by placing flux concentrators on MEMS structures that oscillate at kilohertz frequencies. By shifting the operating frequency, the 1 / f noise will be reduced by one to three orders of magnitude depending upon the sensor and the desired operating frequency. We have succeeded in fabricating the necessary MEMS structures and observing the desired kilohertz normal-mode resonant frequencies. Only microwatts are required to drive the motion. We have used spin valves for our magnetic sensors. The measured field enhancement provided by the flux concentrators agrees to within 4% with the value estimated from finite element calculations. No difference was detected in noise measurements on spin valves with and without the flux concentrators. This result provides strong evidence for the validity of our device concept. Solutions to the sole remaining fabrication problem will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.