Trinucleotide repeat disease alleles can undergo 'dynamic' mutations in which repeat number may change when a gene is transmitted from parent to offspring. By typing >3500 sperm, we determined the size distribution of Huntington's disease (HD) germline mutations produced by 26 individuals from the Venezuelan cohort with CAG/CTG repeat numbers ranging from 37 to 62. Both the mutation frequency and mean change in allele size increased with increasing somatic repeat number. The mutation frequencies averaged 82% and, for individuals with at least 50 repeats, 98%. The extraordinarily high mutation frequency levels are most consistent with a mutation process that occurs throughout germline mitotic divisions, rather than resulting from a single meiotic event. In several cases, the mean change in repeat number differed significantly among individuals with similar somatic allele sizes. This individual variation could not be attributed to age in a simple way or to ' cis ' sequences, suggesting the influence of genetic background or other factors. A familial effect is suggested in one family where both the father and son gave highly unusual spectra compared with other individuals matched for age and repeat number. A statistical model based on incomplete processing of Okazaki fragments during DNA replication was found to provide an excellent fit to the data but variation in parameter values among individuals suggests that the molecular mechanism might be more complex.
BackgroundAspergillus terreus causes invasive aspergillosis (IA) in immunocompromised individuals and can be the leading cause of IA in certain medical centers. We examined a large isolate collection (n = 117) for the presence of cryptic A. terreus species and employed a genome scanning method, Inter-Simple Sequence Repeat (ISSR) PCR to determine A. terreus population structure.ResultsComparative sequence analyses of the calmodulin locus revealed the presence of the recently recognized species A. alabamensis (n = 4) in this collection. Maximum parsimony, Neighbor joining, and Bayesian clustering of the ISSR data from the 113 sequence-confirmed A. terreus isolates demonstrated that one clade was composed exclusively of isolates from Europe and another clade was enriched for isolates from the US.ConclusionsThis study provides evidence of a population structure linked to geographical origin in A. terreus.
Acremonium species cause a variety of human infections, while Lecanicillium species have not been reported as human pathogens. We describe a pseudo-outbreak involving both organisms, highlighting the role and limitations of molecular methods in the characterization of rare fungal isolates. Repeated isolation of these fungi from patient tissue samples raises concerns about exogenous contamination in the hospital environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.