The prediction performance of two computational fluid dynamics codes is compared to each other and to experimental data of a complex swirling and tumbling flow in a practical complex configuration. This configuration consists of a flow in a production-type heavy-duty diesel engine head with 130-mm cylinder bore. One unsteady Reynolds-averaged Navier-Stokes (URANS)-based simulation and two large-eddy simulations (LES) with different inflow conditions have been performed with the KIVA-3V code. Two LES with different resolutions have been performed with the FASTEST-3D code. The parallelization of the this code allows for a more resolved mesh compared to the KIVA-3V code. This kind of simulations gives a complete image of the phenomena that occur in such configurations, and therefore represents a valuable contribution to experimental data. The complex flow structures gives rise to an inhomogeneous turbulence distribution. Such inhomogeneous behavior of the turbulence is well captured by the LES, but naturally damped by the URANS simulation. In the LES, it is confirmed that the inflow conditions play a decisive role for all main flow features. When no particular treatment of the flow through the runners can be made, the best results are achieved by computing a large part of the upstream region, once performed with the FASTEST-3D code. If the inflow conditions are tuned, all main complex flow structures are also recovered by KIVA-3V. The application of upwinding schemes in both codes is in this respect not crucial.
In order to evaluate the direct and indirect contributions to the total combustion noise emission, a combustion chamber consisting of a swirl burner and an exit nozzle of Laval-shape, representing a gas turbine combustor, is investigated by means of experiments and large eddy simulation. Focused on the isothermal flow case first and encouraged by a good overall agreement between the LES and the experimental data for the flow field, a first characterisation of the flow with respect to noise sources is performed. To analyse acoustic properties of the flow, time and length scales are evaluated inside the combustor. Furthermore, the evidence for the existence of a precessing vortex core (PVC), typical for configurations with swirl, is revealed. Finally, the effect of the PVC on the flow inside the Laval nozzle is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.