The transient and quasi-steady flame structure of reacting fuel sprays produced by single-hole injectors has been studied using chemiluminescence imaging and Planar Laser-Induced Fluorescence (PLIF) in various constant-volume facilities at different research institutes participating in the Engine Combustion Network (ECN). The evolution of the high-temperature flame has been followed based on chemiluminescence imaging of the excited-state hydroxyl radical (OH *), and PLIF of ground-state OH. Regions associated with low-temperature chemical reactions are visualized using formaldehyde (CH 2 O) PLIF with 355-nm excitation. We compare the results obtained by different research institutes under nominally identical experimental conditions and fuel injectors. In spite of design differences among the various experimental facilities, the results are consistent. This lends confidence to studies of transient behavior and parameter variations performed by individual research groups. We present results of the transient flame structures at Spray A reference conditions, and include parametric variations around this baseline, involving ambient temperature, oxygen concentration and injection pressure. Key results are the observed influence of an entrainment wave on the transient flame behavior, model-substantiated explanations for the high-intensity OH * lobes at the lift-off length and differences with OH PLIF, and a general analogy of the flame structures with a spray cone along which the flame tends to locate for the applied parametric variations.
The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE's peer review process under the supervision of the session organizer. This process requires a minimum of three (3) reviews by industry experts. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ABSTRACTThis paper first compares strengths and weaknesses of different options for performing optical diagnostics on HD diesel sprays. Then, practical experiences are described with the design and operation of a constant volume test cell over a period of more than five years. In this test rig, pre-combustion of a lean gas mixture is used to generate realistic gas mixture conditions prior to fuel injection. Spray growth, vaporization are studied using Schlieren and Mie scattering experiments. The Schlieren set-up is also used for registration of light emitted by the combustion process; this can also provide information on ignition delay and on soot lift-off length. The paper further describes difficulties encountered with image processing and suggests methods on how to deal with them. Results are presented that illustrate the wide range of capabilities of this test-rig when combined with high speed video registration, in particular its potential for studying issues related to vaporizing fuel spray dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.