The accurate identification of root-knot nematode (RKN) species (Meloidogyne spp.) is essential for implementing management strategies. Methods based on the morphology of adults, isozymes phenotypes and DNA analysis can be used for the diagnosis of RKN. Traditionally, RKN species are identified by the analysis of the perineal patterns and esterase phenotypes. For both procedures, mature females are required. Over the last few decades, accurate and rapid molecular techniques have been validated for RKN diagnosis, including eggs, juveniles and adults as DNA sources. Here, we emphasized the methods used for diagnosis of RKN, including emerging molecular techniques, focusing on the major species reported in Brazil.
Entomopathogenic nematodes (EPNs) (Steinernematidae and Heterorhabditidae) can control pests due to the mutualistic association with bacteria that kill the host by septicemia and make the environment favorable for EPNs development and reproduction. The diversity of EPNs in Brazilian soils requires further study. The identification of EPNs, adapted to environmental and climatic conditions of cultivated areas is important for sustainable pest suppression in integrated management programs in agricultural areas of Brazil. The objective was to identify EPNs isolated from agricultural soils with annual, fruit and forest crops in Brazil. Soil samples were collected and stored in 250 ml glass vials. The nematodes were isolated from these samples with live bait traps ([Galleria mellonella L. (Lepidoptera: Pyralidae) larvae]. Infective juveniles were collected with White traps and identified by DNA barcoding procedures by sequencing the D2/D3 expansion of the 28S rDNA region by PCR. EPNs identified in agricultural areas in Brazil were Heterorhabditis amazonensis, Metarhabditis rainai, Oscheios tipulae and Steinernema rarum. These species should be considered pest biocontrol agents in Brazilian agricultural areas.
The objective of this study was to develop single-step PCR species-specifi c primers that reliably discriminate four economically important Xiphinema species (X. brevicolle, X. elongatum, X. ifacolum and X. longicaudatum) and X. diffusum that is taxonomically very similar to X. brevicolle. Each species-specifi c reverse primer was located in the ITS-1 rDNA region and was used in combination with a universal forward primer located in the 18S rDNA gene. Primer reliability was confi rmed by screening seven and 11 populations, respectively of X. diffusum and X. elongatum. Potential speciesspecifi c primers were also identifi ed for X. brevicolle, X. longicaudatum and X. ifacolum, however too few populations of these species were available to thoroughly assess their reliability. For all speciesspecifi c primers, specifi city was demonstrated by the absence of cross-reactions with 14 non-target Xiphinema species. Multiplex PCR was effective and reproducible for two (X. longicaudatum and X. ifacolum) or three (X. brevicolle, X. diffusum and X. elongatum) of the target nematode species, thus improving the applicability of the diagnostic primers.
The aim of this study was to characterize a Fusarium population obtained from yellow passion fruit (YPF) with collar rot using pathogenicity, morphocultural characteristics and molecular tests. Pathogenicity and disease severity were assessed in six plant species: YPF, zucchini, tomato, bean, soya bean and cucumber. Potato dextrose agar medium (PDA) was used to determine mycelial growth at five temperatures (15-35°C). The colour produced by isolates was also determined on PDA at 25°C. Synthetic nutrient agar medium was used to evaluate: (i) type of mycelium and phialides; (ii) size, shape and number of septa from conidia; and (iii) production of chlamydospores and perithecia. Molecular tests consisted of sequencing the ITS-5Á8S rDNA region and elongation factor 1a (EF-1a) gene. The isolates caused large lesions on YPF, zucchini and tomato, with YPF having the highest mean disease severity and being the only one that showed wilt symptoms and death of the plant. Thus the isolates showed host specificity. Maximum mycelial growth occurred at 25°C and the predominant colour was bluish-white. The isolates produced long phialides, dense aerial mycelium, oval microconidia with a mean size of 9Á5 9 2Á6 lm, macroconidia of 32Á7 9 3Á4 lm with 3Á3 septa, and chlamydospores; only one isolate lacked perithecia. Phylogenetic trees of the ITS region and EF-1a gene showed that isolates from YPF formed a distinct group within the F. solani group and the formae speciales of F. solani. It is proposed to name all isolates from YPF as F. solani f. sp. passiflorae.
There is a significant knowledge gap with regard to non-filarial nematodes and their relationships, if any, with intracellular bacteria, with only sporadic reports in the literature. An intracellular bacteriaXiphinematobacter, belonging to subdivision 2 of the Verrucomicrobia, was previously reported in the ovaries of three species of the non-filarialXiphinema americanum-group of nematodes. We explored the diversity ofXiphinematobacterin 22 populations ofX. americanumsourced from six continents and conservatively have identified nine phylotypes, six of which have not previously been reported. A geographic basis to the phylotypes was noted with phylotypes A and B only found in Europe, whereas phylotypes F, G, H and I were mainly found in North America. Phylotypes C, D and E showed greater geographical variation. Sequences ofXiphinematobacterfrom this study help to inform the taxonomy of Verrucomicrobia such that the status and composition of Verrucomicrobia subdivision 2 potentially requires reflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.