This paper presents the fieldwork and the control system studies to examine and improve the thermal comfort of the occupants in a typical office building in Malaysia. The proposed control system works as the basis of adjusting the thermostat setting at a certain period of time with the degree of using the fuzzy logic. The thermostat of the central AC system has its set point fixed between 21℃ and 22℃, slightly below the range of 23–26℃ as recommended by Malaysian Standard MS1525. In order to maintain the room comfort, the occupants choose to switch OFF the central AC system for a certain period of time before it is switched back ON. It has been repeated at least once per working days. Therefore, the proposed control system is designed to overcome this practice. Pre- and post-comfort surveys have been conducted where the thermal comfort level of the occupants throughout this study is investigated. The air temperature (Ta), globe temperature (Tg), air velocity (V) and relative humidity (RH) in the occupied area were data-logged for continuous five working days. These data are used to compute the operative temperature (Top) before new thermostat set points are generated, which indicates possible adjustment from the recommended set-point (24℃). The proposed thermostat setting has an error tolerance of 2.9% or less. As a result, the simulation results show an adjustment of the thermostat setting from 24℃ to 25.5℃, which successfully maintained the room temperature of the main office between 23.3℃ and 25℃. The relative humidity is maintained between 54.3% and 59.8%. Also, these outcomes have indirectly promoted an average increase of 22.6% in the thermal comfort satisfactory level of the occupants. Practical application: The new conclusions from the simplified thermostat control strategy, which can be customised according to the environment variables in the air-conditioned space (in this case the operative temperature and the relative humidity) or based on the preferences of the occupants, such as the level of thermal comfort that suits the current thermal environment in tropical climates, could be applied as an important guide for building services engineers and researchers. Their aims are to reduce energy usage in HVAC systems in the non-green office buildings in tropical climates while maintaining an adequate thermal comfort level, and thus, the performance and well-being of the office workers are improved.
The current research presents the study of the proposed thermostat setting developed in the previous work through a numerical simulation project using transient system simulation tool. The transient system simulation tool code is used to integrate the fuzzy logic to optimise a room thermostat with the multi-zone building model (Type56a). A set of equations is designed in the transient system simulation tool project to represent the fuzzy logic control system of the proposed thermostat setting. The performance analysis for the airconditioning system installed with and without the application of the control system in terms of the operative zone temperature, the sensible cooling demand, the solar radiation, and the internal gains for a thermal zone for recent years or 2000s, and for the years 2020, 2050 and 2080 were comprehensively examined. Estimations of both predicted mean vote and predicted percentage of dissatisfied persons of the zone were also investigated. The findings indicate that a considerable amount of sensible cooling demand of approximately 8420 kJ/h or equivalent to 3.54% can be saved with the application of the proposed thermostat setting. The predicted mean vote is in the range from À0.22 to 0.72 with its average between 0.20 and 0.26 for the AC system installed with fuzzy logic control. These results further suggest that the thermal comfort of occupants can be improved taking into account their activity level, clothing insulation, indoor air temperature, air velocity, mean radiant temperature and relative humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.