Arsenic is an ubiquitous element in the environment causing oxidative burst in the exposed individuals leading to tissue damage. Antioxidants have long been known to reduce the free radical-mediated oxidative stress. Therefore, the present study was designed to determine whether supplementation of a-tocopherol (400 mg/kg body weight) and ascorbic acid (200 mg/kg body weight) to arsenic-intoxicated rats (100 ppm in drinking water) for 30 days affords protection against the oxidative stress caused by the metalloid. The arsenic-treated rats showed elevated levels of lipid peroxide, decreased levels of non-enzymatic antioxidants and activities of enzymatic antioxidants. Administration of a-tocopherol and ascorbic acid to arsenic-exposed rats showed a decrease in the level of lipid peroxidation (LPO) and enhanced levels of total sulfhydryls, reduced glutathione, ascorbic acid and a-tocopherol and so do the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase to near normal. These findings suggest thata-tocopherol and ascorbic acid prevent LPO and protect the antioxidant system in arsenic-intoxicated rats.
The effect of L-carnitine on lipid peroxidation and enzymatic antioxidants, such as superoxide dismutase, catalase, and glutathione peroxidase, was evaluated in brain regions of young and old rats. In all brain regions except the hypothalamus, lipid peroxidation was higher for old rats than for young control rats. The activity of superoxide dismutase, glutathione peroxidase, and catalase was lower in the striatum, cerebral cortex, and hippocampus, but no difference was observed in the hypothalamus and cerebellum. L-Carnitine administration (intraperitoneally) prevented thiobarbituric acid-reactive substance formation in the cerebral cortex, cerebellum, hypothalamus, hippocampus, and striatum of 24-month-old rats. Administration of L-carnitine reversed the age-associated changes in a duration-dependent manner. Results suggest that the neuroprotective effect on the brains in old rats was achieved by the elevation of antioxidants with L-carnitine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.