Human immunodeficiency virus type 1 (HIV-1) Gag protease cleavage sites (CS) undergo sequence changes during the development of resistance to several protease inhibitors (PIs). We have analyzed the association of sequence variation at the p7/p1 and p1/p6 CS in conjunction with amprenavir (APV)-specific protease mutations following PI combination therapy with APV. Querying a central resistance data repository resulted in the detection of significant associations (P < 0.001) between the presence of APV protease signature mutations and Gag L449F (p1/p6 LP1F) and P453L (p1/p6 PP5L) CS changes. In population-based sequence analyses the I50V mutant was invariably linked to either L449F or P453L. Clonal analysis revealed that both CS mutations were never present in the same genome. Sequential plasma samples from one patient revealed a transition from I50V M46L P453L viruses at early time points to I50V M46I L449F viruses in later samples. Various combinations of the protease and Gag mutations were introduced into the HXB2 laboratory strain of HIV-1. In both single-and multiple-cycle assay systems and in the context of I50V, the L449F and P453L changes consistently increased the 50% inhibitory concentration of APV, while the CS changes alone had no measurable effect on inhibitor sensitivity. The decreased in vitro fitness of the I50V mutant was only partially improved by addition of either CS change (I50V M46I L449F mutant replicative capacity Ϸ 16% of that of wild-type virus). Western blot analysis of Pr55 Gag precursor cleavage products from infected-cell cultures indicated accumulation of uncleaved Gag p1-p6 in all I50V viruses without coexisting CS changes. Purified I50V protease catalyzed cleavage of decapeptides incorporating the L449F or P453L change 10-fold and 22-fold more efficiently than cleavage of the wild-type substrate, respectively. HIV-1 protease CS changes are selected during PI therapy and can have effects on both viral fitness and phenotypic resistance to PIs.
HIV type 1 (HIV-1) drug resistance mutations were selected during antiretroviral therapy successfully suppressing plasma HIV-1 RNA to <50 copies͞ml. New resistant mutant subpopulations were identified by clonal sequencing analyses of viruses cultured from blood cells. Drug susceptibility tests showed that biological clones of virus with the mutations acquired during successful therapy had increased resistance. Each of the five subjects with new resistant mutants had evidence of some residual virus replication during highly active antiretroviral therapy (HAART), based on transient episodes of plasma HIV-1 RNA > 50 copies͞ml and virus env gene sequence changes. Each had received a suboptimal regimen before starting HAART. Antiretroviral-resistant HIV-1 can be selected from residual virus replication during HAART in the absence of sustained rebound of plasma HIV-1 RNA.
Background A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein (AIDSVAX™ B/B) was found previously to be non-protective despite strong antibody responses against the vaccine antigens. We assessed the magnitude and breadth of neutralizing antibody responses in this trial. Methods Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in two independent assays. Vaccine recipients were stratified by gender, race and high versus low behavioral risk of HIV-1 acquisition. Results Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1MN and a subset of other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose post infection. Conclusions Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.
Wild-type viruses from the ViroLogic phenotype-genotype database were evaluated to determine the upper confidence limit of the drug susceptibility distributions, or "biological cutoffs," for the PhenoSense HIV phenotypic drug susceptibility assay. Definition of the natural variation in drug susceptibility in wild-type human immunodeficiency virus (HIV) type 1 isolates is necessary to determine the prevalence of innate drug resistance and to assess the capability of the PhenoSense assay to reliably measure subtle reductions in drug susceptibility. The biological cutoffs for each drug, defined by the 99th percentile of the fold change in the 50% inhibitory concentration distributions or the mean fold change plus 2 standard deviations, were lower than those previously reported for other phenotypic assays and lower than the clinically relevant cutoffs previously defined for the PhenoSense assay. The 99th percentile fold change values ranged from 1.2 (tenofovir) to 1.8 (zidovudine) for nucleoside reverse transcriptase RT inhibitors (RTIs), from 3.0 (efavirenz) to 6.2 (delavirdine) for nonnucleoside RTIs, and from 1.6 (lopinavir) to 3.6 (nelfinavir) for protease inhibitors. To evaluate the potential role of intrinsic assay variability in the observed variations in the drug susceptibilities of wild-type isolates, 10 reference viruses with different drug susceptibility patterns were tested 8 to 30 times each. The median coefficients of variation in fold change for the reference viruses ranged from 12 to 18% for all drugs except zidovudine (32%), strongly suggesting that the observed differences in wild-type virus susceptibility to the different drugs is related to intrinsic virus variability rather than assay variability. The low biological cutoffs and assay variability suggest that the PhenoSense HIV assay may assist in defining clinically relevant susceptibility cutoffs for resistance to antiretroviral drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.