As part of the Sloshing Wing Dynamics H2020 EU project, an experimental campaign was conducted to study slosh-induced damping in a vertically excited tank filled with liquid water or oil and air. In this work, we simulate these experiments using two numerical approaches. First, a single-phase, weakly compressible liquid model is used, and the gas flow (air) is not modeled. For this approach, a proven Smoothed Particle Hydrodynamics (SPH) model is used. In the second approach, both phases are simulated with an incompressible liquid and weakly compressible gas model via a Finite Volume Method (FVM) using Volume-of-Fluid (VOF) to track the liquid phase. In both approaches, the energy distribution of the flow is calculated over time in two- and three-dimensional simulations. It is found that there is reasonable agreement on the energy dissipation evolution between the methods. Both approaches show converging results in 2D simulations, although the SPH simulations seem to have a faster convergence rate. In general, the SPH results tend to overpredict the total dissipation compared to the experiment, while the finite volume 2D results underpredict it. Time histories of the center of mass positions are also compared. The SPH results show a much larger vertical center of mass motion compared to the FVM results, which is more pronounced for the high Reynolds number (water) case, probably linked to the absence of the air phase. On the other hand, the limited center of mass motion of the FVM could be linked to the need for higher spatial resolutions in order to resolve the complex gas–liquid interactions, particularly in 3D.
We study channel turbulence by interpreting its vorticity as a random sea of ocean wave packet analogues. In particular, we investigate the ocean-like properties of vortical packets applying stochastic methods developed for oceanic fields. Taylor’s hypothesis of frozen eddies does not hold when turbulence is not weak, and vortical packets change shape as they are advected by the mean flow, altering their own speed. This is the physical manifestation of a hidden wave dispersion of turbulence. Our analysis at the bulk Reynolds number Reb = 5600 suggests that turbulent fluctuations behave dispersively as gravity-capillary waves, with capillarity being dominant near the wall region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.