All three larval instars of Diabrotica virgifera virgifera LeConte (western corn rootworm, Coleoptera: Chrysomelidae) feed on the roots of maize, Zea mays (L.). We assessed the efficacies of the following four agents in controlling these larvae: (1) the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae), (2) the nematode Heterorhabditis bacteriophora Poinar (Nematoda: Rhabditida), (3) a tefluthrin-based soil insecticide and (4) clothianidin-coated seeds. The agents were applied in field plot experiments in southern Hungary in 2006 and 2007. Efficacy was assessed by comparing the number of emerging D. v. virgifera adults and corresponding root damage among treatments and untreated controls. All agents significantly reduced D. v. virgifera numbers and root damage, but the relative success of each treatment was variable. On average across fields and years, the nematode and the two insecticides reduced D. v. virgifera by 65 ± 34% SD, while the fungus reduced D. v. virgifera by 31 ± 7%. According to the node injury scale, the agents prevented 23-95% of potential root damage. Large-scale commercialisation of these biological agents could offer viable and practical control options against D. v. virgifera.
Genetically engineered maize producing the insecticidal protein Cry3Bb1 from Bacillus thuringiensis (Bt maize) is protected against corn rootworms (Diabrotica spp.), which are serious maize pests in North America and Europe. The aim of the present study was to investigate the interaction of Bt maize (event MON88017) and the entomopathogenic fungus Metarhizium anisopliae for controlling the western corn rootworm, Diabrotica virgifera virgifera. Exposure to Cry3Bb1 expressed in Bt maize seedlings resulted in decreased weight gain in D. v. virgifera larvae but did not influence susceptibility to M. anisopliae. Adult beetles were not affected by Cry3Bb1 in their food, but mortality when feeding on maize leaves was higher than when feeding on silk. Adults were more susceptible to the fungus than larvae. The results indicate that the effects of Bt maize and M. anisopliae on D. v. virgifera are additive and that Bt maize does not interfere with the biological control provided by entomopathogenic fungi.
The entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) was applied in maize fields to control the Western Corn Rootworm Diabrotica virgifera virgifera Le Conte (Coleoptera: Chrysomelidae). Establishment and persistence of two strains of M. anisopliae were investigated after application as ‘fungal colonized barley kernels’ (FCBK) into the soil and as a spore suspension on maize leaves and on the soil surface in 2006 and 2007 at two locations in Hungary.
The applied fungal strains were able to establish at both locations and a long‐term persistence of at least 15 months could be recorded in the soil. A positive correlation between density of colony forming units (CFU) in the soil and the soil inhabiting stages of the host insect D. v. virgifera could be found. M. anisopliae spores applied on maize leaves were able to survive for no longer than 3 days after application, whereas on the soil surface a noticeably increase of fungus densities were found after treatments. Molecular markers were used to identify the applied M. anisopliae strains before and after application of FCBK into the soil of the maize field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.