A B S T R A C T Objective:To design solid self-microemulsifying drug delivery system (S-SMEDDS) of entacapone and evaluate for its anti-Parkinson's potentials. Methods: Solubility studies were performed in various vehicles i.e., oils, surfactants and co-surfactants and pseudo-ternary phase diagrams were plotted to understand the microemulsion formation region. Liquid self-microemulsifying drug delivery systems (SMEDDS) were developed using gingelly and rice bran oil as lipid vehicles, Tween 80 and Span 20 as surfactants and glycerin, propylene glycol as co-surfactants. They were characterized by Fourier transform infrared spectroscopy, pH, viscosity, zeta potential, polydispersibility index and droplet size analysis and evaluated for drug content, in-vitro release, in-vitro diffusion and ex-vivo permeation. Optimized liquid SMEDDS were converted into S-SMEDDS by adsorption and melt granulation procedures. Characterization by differential scanning calorimetry, SEM, micrometrics, reconstitution property, moisture content and evaluation by drug content, drug release kinetics and shelf-life were performed for S-SMEDDS. Parkinsonism was induced and pharmacodynamic potentials of S-SMEDDS were evaluated. Results: S-SMEDDS formulation AG8 had shown the highest drug release of 90.92% within 60 min. Pharmacodynamic studies also proved the efficiency of entacapone S-SMEDDS against Parkinsonism. Conclusions: Entacapone S-SMEDDS is an effective drug delivery system that offers more predictable and extensive drug release with enhanced shelf-life in the treatment of acute Parkinsonism.
The aim of the investigation was to prepare nimesulide emulsion for incorporation in Aloe vera gel base to formulate 'nimesulide - Aloe vera transemulgel' (NAE) and to carryout in-vitro assessment and in-vivo anti-inflammatory studies of the product. Although the use of nimesulide is banned for oral administration, due to its potential for inducing hepatotoxicity and thrombocytopenia, the use of nimesulide for topical delivery is prominent in the treatment of many inflammatory conditions including rheumatoid arthritis. The drug loading capacity of transdermal gels is low for hydrophobic drugs such as nimesulide. Nimesulide can be effectively incorporated into emulgels (a combination of emulsion and gel). Aloe vera has a mild anti-inflammatory effect and in the present study Aloe vera gel was formulated and used as a gel base to prepare NAE. The emulgels thus prepared were evaluated for viscosity, pH, in-vitro permeation, stability and skin irritation test. In-vivo anti-inflammatory studies were performed using carrageenan induced hind paw edema method in Wistar rats. The results were compared with that of commercial nimesulide gel (CNG). From the in-vitro studies, effective permeation of nimesulide from NAE (53.04 %) was observed compared to CNG (44.72 %) at 30 min indicating better drug release from NAE. Topical application of the emulgel found no skin irritation. Stability studies proved the integrity of the formulation. The percentage of inhibition of edema was highest for the prepared NAE (67.4 % inhibition after 240 min) compared to CNG (59.6 %). From our results, it was concluded that the Aloe vera gel acts as an effective gel base to prepare nimesulide emulgel with high drug loading capacity (86.4 % drug content) compared to CNG (70.5 % drug content) with significant anti-inflammatory effect.
Discovered in the 1920s, the biguanide metformin hydrochloride is still the first line drug in the management of Type 2 diabetes mellitus. Metformin hydrochloride is absorbed slowly and incompletely from the gastrointestinal tract. The present research work was undertaken with the aim of developing a fast dissolving film of metformin hydrochloride, suitable for oral trans mucosal administration. Fast dissolving films allow rapid drug dissolution in the oral cavity, ensuring bypass of first pass metabolism resulting in rapid absorption. Films of metformin were prepared by solvent casting method using Hydroxypropyl methylcellulose K15 (HPMC). Six formulations (F1-F6) of metformin hydrochloride were prepared and evaluated for their physical characteristics such as tackiness, thickness, tensile strength, elongation, weight variation, folding endurance, drug content and surface pH. The compatibility of the drug with HPMC was confirmed by FTIR studies. The formulations were subjected to disintegration, in-vitro drug release and the optimised formulation was evaluated for pharmacodynamic studies in diabetic rats. Among the formulations (F1-F6) F4 was found to be the best formulation which contained Hydroxypropyl methyl cellulose K15 at weight ratios of 1:4 and showed excellent film forming characteristics such as disintegration time at 42 sec and percentage drug release of 94.2% within 5 minutes. Pharmacodynamic assessment in diabetes induced rats demonstrated that the fast dissolving films of metformin had a quicker onset of action compared to conventional formulation.
Background:The aim of the study was to develop piroxicam-Aloe vera gel (PAG) formulation and make a pharmacodynamic evaluation of the formulation.Materials and Methods:The gel was prepared by using carbopol 934 as gelling agent and methyl paraben as a preservative in an Aloe vera gel base. The formulated gel was also evaluated for physicochemical parameters like pH, viscosity, drug content, and in vitro diffusion assessment. Pharmacodynamic activity of the formulation was evaluated in Wistar albino rats. The formulated gel was compared with that of similar marketed gel (commercial piroxicam gel (CPG)) against the same parameters.Results:From in vitro studies, an effective drug release from PAG was observed to be 68.17% when compared with that of the CPG (62.71%) at 180 min indicating better drug release from the gel formulated in this study. Percentage inhibition of edema was greater for the preparation of PAG (29.57 mean percent inhibition after 60 min) compared to marketed gel which exhibited 18.3% after 60 min.Conclusion:It was concluded from the results that the Aloe vera gel acts as an effective gel base to prepare piroxicam gel with high drug loading capacity and improved anti-inflammatory effect. From the statistical analysis the formulation of PAG showed better release than the CPG at p < 0.05 level of significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.