Dynamics of gait adjustments required to go over obstacles and to alter direction of locomotion when cued visually were assessed through the measurement of ground reaction forces, muscle activity, and kinematics. The time of appearance of obstacles of varying heights, their position within the step cycle, and cue lights for direction change were varied. Direction change must be planned in the previous step to reduce the acceleration of the body center of mass toward the landing foot to 0. The inability of steering within the step cycle is due to the incapacity of muscles to rotate the body and translate it along the mediolateral axes. For obstacle avoidance, Ss systematically manipulated the gait patterns as a function of obstacle height and position and the time available within the ongoing step. Greater supraspinal involvement in control of locomotion is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.