Dynamics of gait adjustments required to go over obstacles and to alter direction of locomotion when cued visually were assessed through the measurement of ground reaction forces, muscle activity, and kinematics. The time of appearance of obstacles of varying heights, their position within the step cycle, and cue lights for direction change were varied. Direction change must be planned in the previous step to reduce the acceleration of the body center of mass toward the landing foot to 0. The inability of steering within the step cycle is due to the incapacity of muscles to rotate the body and translate it along the mediolateral axes. For obstacle avoidance, Ss systematically manipulated the gait patterns as a function of obstacle height and position and the time available within the ongoing step. Greater supraspinal involvement in control of locomotion is found.
Our goal was to understand the bases for selection of alternate foot placement during locomotion when the normal landing area is undesirable. In this study, a light spot of different shapes and sizes simulated an undesirable landing area. Participants were required to avoid stepping on this spot under different time constraints. Alternate chosen foot placements were categorised into one of eight choices. Results showed that selection of alternate foot placement is systematic. There is a single dominant choice for each combination of light spot and normal landing spot. The dominant choice minimises the displacement of the foot from its normal landing spot (less than half a foot length). If several response choices satisfy this criterion, three selection strategies are used to guide foot placement: placing the foot in the plane of progression, choosing to take a longer step over a shorter step and selecting a medial rather than lateral foot placement. All these alternate foot-placement choices require minimal changes to the ongoing locomotor muscle activity, pose minimal threat to dynamic stability, allow for quick initiation of change in ongoing movement and ensure that the locomotor task runs without interruption. Thus, alternate foot-placement choices are dependent not only on visual input about the location, size and shape of the undesirable surface, but also on the relationship between the characteristics of the undesirable surface and the normal landing area.
The issues explored in this article are the role of exproprioceptive input and the nature of exteroceptive input provided by the visual system in the control of limb elevation as obstacles are stepped over during locomotion. In the first experiment, the differences in limb trajectory of movements over solid and fragile obstacles of similar dimensions were examined. Subjects increased their toe clearance, vertical position of the hip, and the hip vertical velocity when going over a fragile obstacle with the leading limb. This suggests that in addition to visually observable properties of obstacles such as height or width, other properties, such as rigidity or fragility, which may be classified as visually inferred, also influence the limb trajectory. Part of the first and the second experiment was focused on understanding differences in leading limb and trailing limb trajectory over obstacles. The toe clearance of the trailing limb was lower for smaller obstacles. There was no consistent correlation between the toe clearance values of the leading and trailing limbs. The variability in toe clearance was higher for the trailing limb, which is attributable to lack of visual exproprioceptive input about trailing limb movements and to the shorter time available following toe-off to fine-tune the trailing limb trajectory. Because the body center of mass is moving toward the supporting foot when the trailing limb goes over obstacles and the trailing limb foot is moving up, the chances of a trip are minimized and recovery from an unexpected trip are more likely. These results highlight the role of exproprioceptive input provided by the visual system and possible cognitive influences on the limb trajectory as one travels over uneven terrains.
To produce successful and safe walking movements, the locomotor control system must have a detailed awareness of the mechanical properties of the lower limbs. Flexibility of this control comes from an ability to identify and accommodate any changes in limb mechanics by updating its internal representation of the lower limb. To explore the ability of the locomotor control system to tune its representation of the lower limb, eight participants performed three 5 min trials (PRE, WEIGHT and POST) of treadmill walking. During the middle trial the participants wore a 2 kg mass around the leg segment of the left lower limb. Joint kinematics and kinetics were determined to assess changes in the walking movements. The modification of limb inertia by adding mass to the limbs (WEIGHT) required a substantive period of adaptation, which lasted between 45 and 50 strides, before individuals fully adjusted to their new lower limb mechanics to achieve steady-state joint kinematics. These movements were caused in part from an increase in hip flexor and knee extensor activity in early swing followed by an increase in hip extensors and knee flexor activity in late swing. Following the removal of the mass (POST), ankle, knee and hip flexion all increased above the levels that were observed in the PRE condition and returned the baseline levels within 20, 70 and 70 strides, respectively. The removal of the mass appeared to cause a greater disruption to walking than the addition of mass to the limb despite a quick return of the joint moments to the PRE condition. Both the changes following the addition of the mass and its subsequent removal may embody a recalibration of the internal limb representation. These changes were characterized by an integrated response consisting of primary recalibration to the modified mechanical parameters and secondary actions to main the integrity of locomotor objectives such as propulsion, balance, support and safe foot trajectories. These recalibration responses were similar to those demonstrated in upper limb movements in response to altered force environments. Understanding this recalibration process will have implications for the prevention of trips and falls as individuals encounter different movement environments or changes to mechanical properties of their limbs, especially for individuals with decreased proprioception or other neural challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.