The present paper describes the isolation of buffalo pox virus from scab lesions and its molecular characterization through B5R gene sequencing. During our study, pustular pox lesions were observed on the teats and mammary parenchyma of cattle and buffaloes, and the disease was of significant zoonotic importance since similar lesions were produced on the hands, legs, and face of people in close contact with the affected animals. The collected scab materials were subjected for virus isolation in 9-11-day-old chicken embryos by the chorioallontoic membrane route and in the Vero cell line. The virus was confirmed by a sensitive and rapid diagnostic polymerase chain reaction using the primers that amplify "A type inclusion" gene, and further, B5R gene of the virus was sequenced and compared with the corresponding sequences of other orthopoxviruses. The results showed high sequence homology of our isolates with other orthopoxviruses.
Chitosan loaded with various metal ions such as Ag + , Cu 2+ , Zn 2+ , Mn 2+ and Fe 2+ has been reported to exert strong antimicrobial activity. In this study, the silver-nanoparticles (AgNPs) were synthesized at 95°C using chitosan as the reducing agent and stabilizer. The UV-Vis spectrum displayed peak in a range between 415-420 nm, the characteristic surface plasmon resonance band of silver nanoparticles. The size, shape and aggregation properties of the resultant nanoparticles were examined using field emission scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The measurement results indicated that the chitosan-silver nanoparticle (chitosan-AgNP) composite having the mean hydrodynamic diameter range of 495-616 nm were apparently smooth and the silver nanoparticles with the size distribution was from 10 to 15 nm. Chitosan-AgNP composites had a zeta potential of +50.08 mV to +87.75 mV. In vitro conidial germination assay indicated that chitosan-AgNP composite exhibited significantly higher antifungal activity against Colletotrichum gloeosporioides than its components at their respective concentrations. In vivo assay using detached mango fruit cv. Alphonso showed that anthracnose was significantly inhibited by chitosan-AgNP composite. Therefore, this study suggests that postharvest decay in mango can be minimized by chitosan-AgNP composites and its application on a commercial scale needs to be exploited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.