A B S T R A C TNatural conditions that explain the triggering of snow avalanches are becoming better-known, but our understanding of how socio-environmental changes can influence the occurrence of damaging avalanches is still limited. This study analyses the evolution of snow avalanche damage in the Asturian Massif (NW Spain) between 1800 and 2015, paying special attention to changes in land-use and land-cover patterns. A damage index has been performed using historical sources, photointerpretation and fieldwork-based data, which were introduced in a GIS and processed by means of statistical analysis. Mapping allowed connecting spatiotemporal variations of damage and changes in human-environment interactions. The total number of victims was 342 (192 dead and 150 injured). Results show stability in the number of avalanches during the study period, but a progressive decrease in the damage per avalanche. Changes in land use explain the evolution of damage and its spatial/temporal behaviour. The role played by vegetation cover is at the root of this process: damage was the highest during the late 19th and early 20th centuries, when a massive deforestation process affected the protective forest. This deforestation was the result of demographic growth and intensive grazing, disentailment laws and emerging coal mining. Since the mid-20th century, the transformation of a traditional landmanagement system based on overexploitation into a system based on land marginalization and reforestation, together with the decline of deforestation due to industrial and legal causes, resulted in the decrease of avalanches that affected settlements (mostly those released below the potential timberline). The decrease of damage has been sharper in the western sector of the Asturian Massif, where oak deforestation was very intense in the past and where lithology allows for a more successful ecological succession at present. Taking into account that reforestation can be observed in mountain environments of developed countries worldwide, and considering present initiatives conducted to counteract its negative cultural effects by means of grazing and clearing operations, planning is imperative, and this research provides useful information for environmental management policies and risk mitigation in avalanche prone areas.
Between the late Little Ice Age (LIA) cold stage and the early 20th century warmer scenario, a transitional regime characterized by an unstable climatic pattern generated a series of climate extremes affecting mid-latitude mountainous areas, as the Asturian Massif. There, the 1888 snow avalanche cycle appears as the most significant event, standing out among the rest of avalanche cycles recorded in this area during the 1800-2015 period both in terms of the number of damaging avalanches and damages caused by them. Among the factors that explain this event stands out the orographic precipitation phenomenon; the interaction of a cold and wet air mass originating from the North Atlantic with the relief of the Massif, which led to extraordinary snow thicknesses (>2 m) at very low altitudes (500 m a.s.l.), especially in the north-facing, Asturian versant of the Cantabrian Mountains. This allowed the triggering of avalanches in slopes gentler and in lower altitudes than usual, covering longer distances; consequently, avalanches reached more easily the settlements, generally placed at the bottom of the valley or in middle slope positions. The greater impact on the settlements, which suffered 84% of the damages, was the cause of this episode's high socioeconomic impact (29 people dead, 34 injured, 123 heads of cattle dead, 124 buildings destroyed). These events occurred at a time when the mountain villages were highly populated and subjected to intense exploitation, coinciding with the development of new communication infrastructures in the upper parts of the Massif. Therefore, the 1888 episode constitutes a good example of both the impact of hydrometeorological events in mountain environments under high demographic pressure, and of climate extremes involved in a transition period from cold to warmer weather conditions. García-Hernández et al. Un evento extremo entre la Pequeña Edad de Hielo y el siglo XX: el ciclo de avalanchas de 1888 en el Macizo Asturiano (norte de España)RESUMEN. Entre la Pequeña Edad de Hielo (PEH) y las primeras décadas del siglo XX, un régimen de transición climática caracterizado por su inestabilidad generó una serie de eventos extremos que afectaron a las zonas montañosas de latitudes medias, como el Macizo Asturiano. Allí, el ciclo de aludes de 1888 fue el acontecimiento más significativo, destacando entre el resto de ciclos de avalanchas registrados en esta área entre 1800 y 2015 tanto por el número de avalanchas dañinas que se registraron como por los daños que estas causaron. Entre los factores que explican este acontecimiento destaca el fenómeno de las precipitaciones orográficas; la interacción de una masa de aire frío y húmedo (procedente del Atlántico Norte) con el relieve del Macizo, condujo a espesores de nieve extraordinarios (> 2 m) a muy bajas altitudes (500 m s.n.m.), especialmente en la vertiente asturiana (orientada al norte). Esto permitió el desencadenamiento de avalanchas en pendientes más suaves y a altitudes más bajas de lo habitual, cubriendo distancias más largas que en ot...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.