The microstructure and mechanical properties of an MMC based on AA 7075 and strengthened through silicon carbide (SiC) as well as boron carbide (B4C) elements were studied. The (SiC + B4C) combination was used in various weight percentages of 4, 8, 12, and 16% to create the hybrid composites utilizing the traditional stir casting procedure. XRD and SEM measurements were used to investigate the dispersion of the reinforced particles. For example, microhardness, impact strength, and ultimate tensile strength were measured on hybrid composites at room temperature. The density and porosity of the materials were also studied. The researchers found that increasing the weight percentage of the (SiC + B4C) mixture resulted in a small drop in % elongation. However, hybrid composites comprising 16% (SiC + B4C) weight reduction showed some decrease in hardness and tensile strength. Equated to unreinforced alloys, the hardness and tensile strength of hybrid composites rise by 8% and 21%, respectively. Reinforcement also resulted in a decrease in impact strength and density, as well as an increase in porosity.
The composite was made using the stir cast manufacturing method. Many parameters, like stirring speed, stirring time, ZrO2% reinforcement, and cast temperature, are evaluated in a Taguchi experimental design to see how they affected the composite properties. In terms of composite properties, ZrO2% reinforcement and the stir speed have the most significant impact. There were 25.02% gains in ultimate tensile strength and hardness, as well as a decrease in composite wear loss, when the optimal stir casting parameters were used compared to the initial stir casting settings. To get insight into the process and the qualities of the composite, the hot-pressing parameters were studied. Pressure, followed by temperature, is the most critical factor in determining the properties of composites. When a hot-pressing setting was determined to reduce the wear loss by a significant 39.3%, it was deemed perfect by the superranking concept. Under ideal conditions, hot-pressing procedures reduced wear loss by 40.8% while boosting ultimate tensile strength and hardness by 19.83% and 9.6%, respectively. The resulting microstructures and worn surface morphologies from stir casting and hot pressing show vastly different properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.