We demonstrate how planar microresonators (PMRs) can be utilized to investigate the angular dependent magnetic resonance response of single magnetic nanostructures. In contrast to alternative detection schemes like electrical or optical detection, the PMR approach provides a classical means of investigating the high frequency dynamics of single magnetic entities, enabling the use of well-established analysis methods of ferromagnetic resonance (FMR) spectroscopy. To demonstrate the performance of the PMR-based FMR setup for angular dependent measurements, we investigate the microwave excited magnons in a single Co stripe of 5 Â 1 Â 0.02 lm 3 and compare the results to micromagnetic simulations. The evolution of excited magnons under rotation of one individual stripe with respect to a static magnetic field is investigated. Besides quasi uniform excitations, we observe magneto-static as well as localized excitations. We find a strong influence of inhomogeneous dynamic and static demagnetizing fields for all modes. V
Electromigration driven void motion is studied in Ag wires with an initially well-defined single crystal lattice by in situ scanning electron microscopy. Voids are moving in opposite direction to the electron flow. When the electron current is reversed, voids exactly retrace their previous motion path with an increased drift velocity: The microstructure of the Ag wire “remembers” the motion path of the initial voids. To investigate the nature of this memory effect, we analyzed the crystal lattice with electron backscatter diffraction after passing of a void. The results show a permanent lattice degradation caused by the moving void. The implication of this finding for the reversibility of EM will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.