Lipids were generated during the routine storage of platelet concentrates that prime the NADPH oxidase, and they may play a role in the severe complications of transfusion therapy. Other non-lipid compounds, such as interleukin 8, that are generated in whole-blood platelets may also contribute to the observed priming activity of plasma.
The t(10;11)(p13;q14-21) is a non-random translocation that occurs primarily in T cell acute lymphoblastic leukemias (T-ALL), but has also been observed in leukemias and lymphomas of diverse lineages. In U937, a cell line established from a diffuse histiocytic lymphoma, a t(10;11)(p13;q14-21) fuses AF10 to CALM. AF10 is also fused to MLL by a translocation that appears quite similar at the cytogenetic level, the t(10;11)(p12;q23). Fluorescence in situ hybridization studies have demonstrated that AF10 and CALM are also involved in other hematological malignancies containing t(10;11)(p13;q21), but no data are available concerning the molecular details of AF10-CALM fusion in primary leukemias. Using RT-PCR, we amplified multiple different isoforms of AF10-CALM and CALM-AF10 fusion cDNAs from a primary T cell ALL containing a t(10;11)(p13-14;q14-21). These cDNAs arose via alternative splicing of exons from both AF10 and CALM, which we demonstrated can also occur in the native genes. We identified at least two novel AF10 exons that can be included in wild-type and fusion cDNAs. The majority of the AF10 and AF10-CALM cDNA isoforms that we identified are predicted to encode for truncated AF10 polypeptides, raising the possibility that these might have important cellular functions in normal and malignant cells, perhaps by acting as dominant negative inhibitors of fulllength AF10 or related proteins.
Decreased plasma proteins likely underlie lower rates of allergic and febrile, nonhemolytic transfusion reactions from the infusion of PAS-C PLTs. Decreased anti-A and anti-B titers may prevent hemolysis from minor ABO mismatch. Lower HLA antibody specificities may mitigate transfusion-related acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.