Sperm-sexing has been used to produce embryos and offspring of a pre-determined sex in a number of species. However, the fertility of sex-sorted sperm is reduced and the full effects of sperm-sexing remain to be elucidated. The purpose of the present study was to investigate the potential effects of sex-sorted sperm on mRNA expression patterns of developmentally important genes employing in vitro produced bovine embryos. Bovine embryos were produced in vitro with unsorted and sex-sorted sperm and mRNA expression patterns were determined for glucose-3 transporter (Glut-3), glucose-6-phosphate dehydrogenase (G6PD), X-inactive specific transcript (X-ist) and Heat shock protein 70.1 (Hsp) using semi-quantitative endpoint reverse transcriptase-PCR in male and female, day-7 and 8 embryos. The relative abundance (RA) of Glut-3 was higher for day-7 male than female embryos, and day-7 embryos derived from unsorted compared with sex-sorted sperm. The RA of G6PD was higher for embryos derived from unsorted than sex-sorted sperm, and for day-8 female compared with male embryos. The RA of Xist was higher for female than male embryos, and for day-7 female embryos derived from unsorted than sex-sorted sperm. Hsp RA was higher for female compared with male embryos, was similar for day-7 and 8 embryos, and unsorted and sex-sorted sperm derived embryos. These results demonstrate differential expression of developmentally important genes between male and female embryos, and embryos derived from unsorted and sex-sorted sperm.
Recently, we generated transposon-transgenic boars (Sus scrofa), which carry three monomeric copies of a fluorophore marker gene. Amazingly, a ubiquitous fluorophore expression in somatic, as well as in germ cells was found. Here, we characterized the prominent fluorophore load in mature spermatozoa of these animals. Sperm samples were analyzed for general fertility parameters, sorted according to X and Y chromosome-bearing sperm fractions, assessed for potential detrimental effects of the reporter, and used for inseminations into estrous sows. Independent of their genotype, all spermatozoa were uniformly fluorescent with a subcellular compartmentalization of the fluorophore protein in postacrosomal sheath, mid piece and tail. Transmission of the fluorophore protein to fertilized oocytes was shown by confocal microscopic analysis of zygotes. The monomeric copies of the transgene segregated during meiosis, rendering a certain fraction of the spermatozoa non-transgenic (about 10% based on analysis of 74 F1 offspring). The genotype-independent transmission of the fluorophore protein by spermatozoa to oocytes represents a non-genetic contribution to the mammalian embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.