Testicular necrosis is a sensitive endpoint for cadmium (Cd 2؉ , Cd) toxicity across all species tested. Resistance to Cd-induced testicular damage is a recessive trait assigned to the Cdm locus on mouse chromosome 3. We first narrowed the Cdm-gene-containing region to 880 kb. SNP analysis of this region from two sensitive and two resistant inbred strains demonstrated a 400-kb haplotype block consistent with the Cd-induced toxicity phenotype; in this region is the Slc39a8 gene encoding a member of the solute-carrier superfamily. Slc39a8 encodes SLC39A8 (ZIP8), whose homologs in plant and yeast are putative zinc transporters. We show here that ZRT-, IRT-like protein (ZIP)8 expression in cultured mouse fetal fibroblasts leads to a >10-fold increase in the rate of intracellular Cd influx and accumulation and 30-fold increase in sensitivity to Cd-induced cell death. The complete ZIP8 mRNA and intron-exon splice junctions have no nucleotide differences between two sensitive and two resistant strains of mice; by using situ hybridization, we found that ZIP8 mRNA is prominent in the vascular endothelial cells of the testis of the sensitive strains of mice but absent in these cells of resistant strains. Slc39a8 is therefore the Cdm gene, defining sensitivity to Cd toxicity specifically in vascular endothelial cells of the testis. metal influx ͉ vascular endothelial cells ͉ solute carrier gene superfamily ͉ in situ hybridization C d is a toxic and carcinogenic nonessential metal (1), which can enter the body through the intestine, skin, and lung and accumulates in the kidney (1-3). The level of Cd in the environment has risen with advances in industrialization, and the role of Cd in human disease is of increasing concern. The mechanisms of Cd toxicity are poorly understood, although it is known that Cd exerts its effects intracellularly, and there are polypeptides such as metallothionein (4) and reduced glutathione (5) that bind Cd and afford protection. The subcellular events by which Cd is taken up by cells or removed from cells remain obscure, although such knowledge could provide potential therapeutic targets for protection or intervention against Cd toxicity. Several proteins transport Cd into bacteria, yeast, plants, and mammalian cells in culture (6-11), but their specific roles in causing toxicity are unclear; these studies underscore the difficulties in extrapolating from observations in cell culture to the intact animal.Nature has provided a fascinating genetic system as a foothold into identifying a gene involved in Cd toxicity. It is known that Cd-induced testicular necrosis is common across all animal species having testes: rodents, opossum, armadillos, frogs, pigeons, roosters, and fish (12-17). Cellular events that precede Cd-induced testicular toxicity indicate that vascular endothelial cell injury is the earliest and, perhaps, the causative event (16,(18)(19)(20)(21)(22)(23)(24).Some inbred mouse strains are resistant to Cd-induced testicular toxicity (25). The resistance phenotype segregates largely as a...
Firefighting continues to be among the most hazardous yet least studied occupations in terms of exposures and their relationship to occupational disease. Exposures are complex, involving mixtures of particles and chemicals such as polycyclic aromatic hydrocarbons (PAHs). Adverse health effects associated with these agents include elevated incidences of coronary heart disease and several cancers. PAHs have been detected at fire scenes, and in the firehouse rest area and kitchen, routinely adjoining the truck bay, and where firefighters spend a major part of each shift. An academic-community partnership was developed with the Cincinnati Fire Department with the goal of understanding active firefighters' airborne and dermal PAH exposure. PAHs were measured in air and particulates, and number and mass concentrations, respectively, of submicron (0.02–1 μm) and PM2.5 (2.5 μm diameter and less) particles during overhaul events in two firehouses and a University of Cincinnati administrative facility as a comparison location. During overhaul firefighters evaluate partially combusted materials for re-ignition after fire extinguishment and commonly remove Self-Contained Breathing Apparatus (SCBA). Face and neck wipes were also collected at a domestic fire scene. Overhaul air samples had higher mean concentrations of PM2.5 and submicron particles than those collected in the firehouse, principally in the truck bay and kitchen. Among the 17 PAHs analyzed, only naphthalene and acenaphthylene were generally detectable. Naphthalene was present in 7 out of 8 overhaul activities, in 2 out of 3 firehouse (kitchen and truck bay) samples, and in none collected from the control site. In firefighter face and neck wipes a greater number of PAHs were found, several of which have carcinogenic activity, such as benzofluoranthene, an agent also found in overhaul air samples. Although the concentration for naphthalene, and all other individual PAHs, was very low, the potential simultaneous exposure to multiple chemicals even in small quantities in combination with high ultrafine particle exposure deserves further study. It is recommended that personal respiratory and skin protection be worn throughout the overhaul process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.