Many thousand organic compounds are in common use and new ones introduced daily. With many of these materials, little is known about their toxic hazard. For years scientists have been investigating the relation of structure and properties to biological activity. Among the factors relating to toxicity are bioaccumulation and persistence in the organism. In this study, the relation of partition coefficient and solubility to bioaccumulation of some organochlorine compounds was investigated as was also the reactivity of several organophosphates. The work adds confirmation to the relation of molecular parameters to penetration, accumulation, and persistence in toxic action.
In the manufacture and use of the several thousand chemicals employed by technological societies, portions of these chemicals escape or are intentionally introduced into the environment. The behavior, fate, and to some extent the effects produced by these chemicals are a result of a complex interaction of the properties of the chemical with the various processes governing transport, degradation, sequestration, and uptake by organisms. In addition, such processes as adsorption, evaporation, partitioning, and degradation are influenced by ambient conditions of temperature, air movement, moisture, presence of other chemicals, and the concentration and properties of the subject chemicals. These influence the level and extent of exposure to these chemicals that man might receive. Study of the physicochemical properties of compounds in relation to these various processes has provided a basis for better understanding of the quantitative behavior. Such information is useful in development of predictive models on behavior and fate of the chemicals in relation to human exposure. Beyond this, it provides information that could be used to devise procedures of manufacture, use, and disposal that would minimize environmental contamination. Some of the physical principles involved in chemodynamics are presented in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.