SummaryIf inhibitory substrates are being utilized in a well-stirred biological reactor, microbiological growth on the walls of the reactor can create a scale-up problem. A simple model is proposed which shows that without such growth, of the three existing steady states only one is stable and nontrivial, but with wall growth the trivial, stable, steady state (washout) is impossible. In addition, wall growth reduces the region over which three steady states are feasible and reduces the minimum residence time for which there is only one steady state that corresponds to a high conversion. Thus, a laboratory process wi€h a high surface area to volume ratio can give an over optimistic prediction of both necessary residence time and stability of the full scale process unless wall growth is accounted for.
SummaryTransient experiments were conducted on a Pseudmomas utilizing phenol in a continuous culture by disturbing the influent substrate concentration and dilution rate. Two stable steady states existed for some ranges of the parameters. Highly damped oscillations were observed in approaching a new high conversion steady state or in returning to a new high conversion steady state following a small disturbance. When a large disturbance was applied there was a smooth (overdamped) approach to a new low conversion steady state.The observed oscillatory behavior for small disturbances was predicted by a modified Powell-Ierusalemskii bottleneck model, but could not be predicted by a Monod-Haldane model; neither model was accurate for predicting the effect of large disturbances.A constant wall growth factor was used to account for microbial film activity, and the existence of two stable steady states was directly due to the presence of the film.
SummaryIt is shown that two steady states exist in certain regions of operation of a 2-liter continuous stirred tank biological reactor. Transition was made from one steady state to another by applying shock loads of either phenol substrate which is inhibitory to the culture at high concentrations or by adding large additional amounts of concentrated organisms. The existence of the multiple steady states is ascribed to the existence of wall growth, and their position is determined by the amount of wall growth. Transient behavior of the system did not follow the predictions of the simple wall growth model but the culture appeared to undergo a lag period immediately after applying the shock load to the system. It is concluded that the stability of a continuous culture utilizing an inhibitory substrate is improved by increasing the degree of wall growth and decreasing the substrate feed concentration. It is also concluded that small scale experiments can usually not be interpreted correctly unless the effect of wall growth is taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.