Although the habitat requirements of breeding populations of Henslow's Sparrow (Ammodramus henslowii) have been examined, less is known about their habitat requirements and ecology during the nonbreeding season. We estimated population densities and quantified habitat associations of Henslow's Sparrows wintering in saline soil barrens in southern Arkansas. Densities of Henslow's Sparrows in the saline soil barrens were similar to those in the Longleaf Pine (Pinus palustris) Ecosystem of the southeastern United States, considered by many to be their primary wintering habitat. Henslow's Sparrows were closely associated with open areas with greater cover of Aristida spp. and globe beaksedge (Rhynchospora globularis), greater stem density at 11–20 cm above ground, more lichens, more herbaceous cover, more bare ground, greater occurrence of little bluestem (Schizacyrium scoparium) as the tallest vegetation, less moss, and less shrub cover than randomly selected sites. In contrast to the results of studies conducted in the Longleaf Pine Ecosystem, the presence of Henslow's Sparrows in our study was not correlated with the height of the tallest vegetation. Our results indicate that saline soil barrens of southern Arkansas support a high density of wintering Henslow's Sparrows and do so for longer postdisturbance periods than longleaf pine savanna. We also found that stem density near the ground was similar to that reported from longleaf pine savanna, but only about half that observed on their breeding grounds. Areas used by Henslow's Sparrows had more lichen and less moss cover, suggesting that those areas were drier than random sites within the barrens. Further research is needed to determine if large populations of Henslow's Sparrows winter in other saline soil barrens and if fire influences habitat associations and densities in the barrens.
As part of ongoing efforts to understand and document the flora of the southeastern United States, a number of taxonomic changes at generic, specific, and infraspecific rank are made. We also discuss and clarify the recommended taxonomy for other taxa (not requiring nomenclatural acts) and present a point of view about the practical and philosophic basis for making taxonomic changes in an allegedly well-understood flora. The genera (and families) affected are Allium (Alliaceae), Erigeron, Liatris, and Trilisa (Asteraceae), Calycanthus (Calycanthaceae), Gaylussacia (Ericaceae), Dalea and Mimosa (Fabaceae), Hydrophyllum (Hydrophyllaceae), Didymoglossum (Hymenophyllaceae), Monarda (Lamiaceae), Kosteletzkya and Sida (Malvaceae), Narthecium (Nartheciaceae), Agalinis, Melampyrum, and Orobanche/Aphyllon/Myzorrhiza (Orobanchaceae), Dichanthelium and Elymus (Poaceae), Clematis (Ranunculaceae), and Maianthemum (Ruscaceae).
Smith's Longspurs (Calcarius pictus) are a species of concern in North America because of their limited range and apparent low population size. To better understand winter habitat needs and guide management of this species, we examined habitat associations of Smith's Longspurs in eastern Arkansas by comparing grassland patches where Smith's Longspurs flushed to randomly located patches in the same area. Smith's Longspurs were found in sparse grassland patches of relatively low height adjacent to airport runways where the native grass prairie three‐awn (Aristida oligantha) dominated ground cover and vertical structure. Smith's Longspurs were not found in vegetation plots dominated by non‐native Bermuda grass (Cynodon dactylon). Prairie three‐awn grass may provide concealment from predators and their seeds may be an important food source. Occurrence of Smith's Longspurs was also correlated with less litter, perhaps because deeper litter could make walking and searching for seeds more difficult. Availability of suitable habitat for Smith's Longspurs along airport runways may be declining due to natural succession of grassland habitat in the absence of disturbance and recent changes in management that favor Bermuda grass. Conversion and degradation of native prairie has resulted in the decline in abundance and distribution of Chestnut‐collared Longspurs (C. ornatus) and McCown's Longspurs (Rhynchophanes mccownii). Our findings suggest that conversion of native grasslands to non‐native grasslands results in loss and degradation of habitat for wintering populations of Smith's Longspurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.