Two distinct, stable alignment states have been observed for a nematic liquid crystal confined in a layer with thickness of 12 m and in square wells with sides of length between 20 and 80 m. The director lies in the plane of the layer and line defects occur in two corners of the squares. The positions of the defects determine whether the director orientation is across the diagonal or is parallel to two opposite edges of the square. The device is multistable because both the diagonal and parallel states are stable when rotated by multiples of 90°in plane.
Abstract:Tin doped indium oxide (ITO) has been directly deposited onto a variety of flexible materials by a reactive sputtering technique that utilises a remotely generated, high density plasma. This technique, known as high target utilisation sputtering (HiTUS), allows for the high rate deposition of good quality ITO films onto polymeric materials with no substrate heating or post deposition annealing. Coatings with a resistivity of 3.8 ×10−4 Ωcm and an average visible transmission of greater than 90% have been deposited onto PEN and PET substrate materials at a deposition rate of 70 nm/min. The electrical and optical properties are retained when the coatings are flexed through a 1.0 cm bend radius, making them of interest for flexible display applications.
Abstract. An investigation into the modification of low temperature deposited ZnO thin films by different annealing processes has been undertaken using laser, thermal and rapid thermal annealing of 60nm ZnO films deposited by Hi-Target-Utilization-Sputtering. Single pulse laser annealing using a KrF excimer laser ( A = 248nm) over a range of fluences up to 315 mJ/cm 2 demonstrates controlled indepth modification of internal film microstructure and luminescence properties without the film degradation produced by high temperature thermal and RTA processes. Photoluminescence properties show that the ratio of defect related deep level emission (DLE, 450nm -750nm, 2.76eV-1.65eV) to excitonic near band-edge emission (NBE at 381nm, 3.26eV) is directly correlated to processing parameters. Thermal and rapid thermal processing results in the evolution of a strong visible orange/red DLE photoluminescence (with peaks at 590nm, 2.10eV and 670nm, 1.85eV) dominated by defects related to excess oxygen. At higher temperatures, the appearance of a green/yellow emission (530nm, 2.34eV) indicates a transition of the dominant radiative transfer mechanism. In contrast, laser processing removes defect related DLE and produces films with intense NBE luminescence, correlated to the observed formation of large grains (25-40nm IntroductionThin films of ZnO are of interest across a range of optoelectronic and sensor device applications due to ZnO being a wide gap (>3 eV) n-type semiconductor with a high exciton binding energy [1] and a piezoelectric response [2]. Poly crystalline thin films of ZnO are deposited by a variety of physical and chemical vapour methods, with sputtering [1] being a preferred choice for low cost and scalability. However, to achieve the desired thin film properties, particularly for low temperature deposited films, it is critical to control grain microstructure, surface morphology, and internal defects [3]. Techniques that have been previously reported to improve these properties of ZnO thin films include post deposition thermal annealing [4,5], rapid thermal annealing [6,7], and laser annealing [8,9,10]. In this paper we present the results from a comparative study of the effect of all three of these annealing processes on the microstructure, crystallinity and associated intrinsic photoluminescence properties of low temperature sputter deposited ZnO thin films. The results demonstrate that pulsed laser annealing is a powerful tool for the controlled modification of low temperature deposited thin films. In particular, the work presented here explores the effect of a more comprehensive range of laser processing parameters on low temperature ZnO thin films than previously reported. The results
We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.