Background— The coxsackievirus-adenovirus receptor (CAR) was cloned as a receptor for both viruses, but its primary biological functions and regulatory mechanisms are unknown. CAR was low in healthy adult myocardium, whereas strong CAR reexpression was observed in human dilated cardiomyopathy. The molecular mechanisms of CAR induction in cardiomyocytes are unknown. Methods and Results— We report on CAR regulation during development, CAR induction after myocardial infarction, and cell-to-cell contact–dependent CAR regulation in the rat. The high CAR expression during development in various organs decreased up to 190-fold after birth. After infarction resulting in severe cardiac dysfunction (dP/dt max , −53%; dP/dt min , −58%; left ventricular pressure, −45%), CAR was induced locally in cardiomyocytes of the infarct zone, where it was also expressed by capillary-like CD31 + structures and CD18 + interstitial cells, whereas it remained confined to subendothelial layers of arterioles and venules. In cultured cardiomyocytes, endothelin-1, cardiotrophin-1, leukemia-inhibiting factor, and cyclic stretch had no effect on CAR, whereas at high versus low cell density, CAR was suppressed up to 10-fold ( P =0.006). Conditioned media from low- or high-density cardiomyocytes or cardiofibroblasts had no effect. Conclusions— The locally confined CAR upregulation after infarction makes induction by various humoral factors unlikely, because cardiac dysfunction results in high activities of sympathetic and renin-angiotensin systems and cytokines. The cell culture experiments identify a cell-to-cell contact–dependent mechanism of CAR regulation. Further characterization of the signals linking cell-to-cell interactions to CAR gene expression may provide insight into mechanisms and functional consequences of the generalized CAR induction in dilated cardiomyopathy, and of its local induction after myocardial infarction.
Background— Investigation of disease pathogenesis confined to protein-coding regions of the genome may be incomplete because many noncoding variants are associated with disease. We aimed to identify novel predictive markers for the course of enterovirus (CVB3) cardiomyopathy by screening for noncoding elements influencing the grossly different antiviral capacity of individual patients. Methods and Results— Transcriptome mapping of CVB3 cardiomyopathy patients revealed distinctive cardiac microRNA (miR) patterns associated with spontaneous virus clearance and recovery (CVB3-ELIM) versus virus persistence and progressive clinical deterioration (CVB3-PERS). Profiling of protein-coding genes and 754 miRs in endomyocardial biopsies of test cohorts was performed at their initial presentation, and those spontaneously eliminating the virus were compared with those with virus persistence on follow-up. miR profiling revealed highly significant differences in cardiac levels of 16 miRs, but not of protein-coding genes. Evaluation of this primary distinctive miR pattern in validation cohorts, and multivariate receiver operating characteristic curve analysis, confirmed this pattern as highly predictive for disease course (area under the curve, 0.897±0.071; 95% confidence interval, 0.758–1.000). Eight miRs were strongly induced in CVB3-PERS (miRs 135b, 155, 190, 422a, 489, 590, 601, 1290), but undetectable in CVB3-ELIM or controls. They are predicted to target multiple immune response genes, and 2 of these were confirmed by antisense-mediated ablation of miRs 135b, 190, and 422a in the monocytic THP-1 cell line. Conclusions— An immediate clinical application of the data is cardiac miR profiling to assess the risk of virus persistence and progressive clinical deterioration in CVB3 cardiomyopathy. Patients at risk are eligible for immediate antiviral therapy to minimize irreversible cardiac damage.
Based on the definition in the European Society of Cardiology statement, myocarditis is an inflammatory disease of the myocardium diagnosed by established histological, immunological, and immunohistochemical criteria, whereas inflammatory cardiomyopathy is myocarditis in association with cardiac dysfunction. Actual incidences of myocarditis and CMi are difficult to determine. Studies addressing the issue of sudden cardiac death in young people report a highly variable autopsy prevalence of myocarditis, ranging from 2-42% of cases. Similarly, biopsy-proven myocarditis has been reported in 9-16% of adult patients with unexplained nonischemic dilated cardiomyopathy (DCM). In up to 30% of cases, biopsy-proven myocarditis can progress to DCM and is associated with a poor prognosis. Prognosis in myocarditis patients also varies according to underlying etiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.