The effect of ambient gas on the expansion dynamics of the plasma generated by laser ablation of an aluminum target has been investigated using frequency doubled radiation from a Q-switched Nd:YAG laser. The diagnostic tools include fast photography of overall visible plume emission using a 2 ns gated intensified charged coupled device and space and time resolved emission spectroscopy using a 50 cm monochromator/spectrograph and photomultiplier tube. The expansion behavior of the plasma was studied with ambient air pressure ranging from 10 Ϫ6 to 100 Torr. Free expansion, plume splitting and sharpening, hydrodynamic instability, and stagnation of the plume were observed at different pressure levels. Space and time resolved emission spectroscopic studies showed a twin peak distribution for Al and Al ϩ species at farther distances illustrating plume splitting at pressures higher than 100 mTorr. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed. The expansion of the plume front was compared with various expansion models and found to be generally in good agreement.
The dynamics and confinement of laser-created plumes expanding across a transverse magnetic field have been investigated. 1.06 m, 8 ns pulses from a neodymium-doped yttrium aluminum garnet laser were used to create an aluminum plasma which was allowed to expand across a 0.64 T magnetic field. Fast photography, emission spectroscopy, and time of flight spectroscopy were used as diagnostic tools. Changes in plume structure and dynamics, enhanced emission and ionization, and velocity enhancement were observed in the presence of the magnetic field. Photographic studies showed that the plume is not fully stopped and diffuses across the field. The temperature of the plume was found to increase due to Joule heating and adiabatic compression. The time of flight studies showed that all of the species are slowed down significantly. A multiple peak temporal distribution was observed for neutral species.
The effect of ambient gas on the dynamics of the plasma generated by laser ablation of a carbon target using 1.06 μm radiation from a Q-switched Nd:YAG laser has been investigated using a spectroscopic technique. The emission characteristics of the carbon plasma produced in argon, helium and air atmospheres are found to depend strongly on the nature and pressure of the surrounding gas. It has been observed that hotter and denser plasmas are formed in an argon atmosphere rather than in helium or air as an ambient.
Plume splitting and sharpening were observed in laser-produced aluminium plasma created using 532 nm, 8 ns pulses from a frequency doubled Nd : YAG laser. Measurements were made using 2 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The motion of the leading edge of the plume was studied with several background air pressures and the expansion of the plume front was compared with various expansion models. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.