The effect of ambient gas on the expansion dynamics of the plasma generated by laser ablation of an aluminum target has been investigated using frequency doubled radiation from a Q-switched Nd:YAG laser. The diagnostic tools include fast photography of overall visible plume emission using a 2 ns gated intensified charged coupled device and space and time resolved emission spectroscopy using a 50 cm monochromator/spectrograph and photomultiplier tube. The expansion behavior of the plasma was studied with ambient air pressure ranging from 10 Ϫ6 to 100 Torr. Free expansion, plume splitting and sharpening, hydrodynamic instability, and stagnation of the plume were observed at different pressure levels. Space and time resolved emission spectroscopic studies showed a twin peak distribution for Al and Al ϩ species at farther distances illustrating plume splitting at pressures higher than 100 mTorr. Combining imaging together with time resolved emission diagnostics, a triple structure of the plume was observed. The expansion of the plume front was compared with various expansion models and found to be generally in good agreement.
Plasma generated by fundamental radiation from a Nd:YAG laser focused onto a graphite target is studied spectroscopically. Measured line profiles of several ionic species were used to infer electron temperature and density at several sections located in front of the target surface. Line intensities of successive ionization states of carbon were used for electron temperature calculations. Stark broadened profiles of singly ionized species have been utilized for electron density measurements. Electron density as well as electron temperature were studied as functions of laser irradiance and time elapsed after the incidence of laser pulse. The validity of the assumption of local thermodynamic equilibrium is discussed in light of the results obtained. © 1997 American Institute of Physics. ͓S0021-8979͑97͒04116-9͔
The dynamics and confinement of laser-created plumes expanding across a transverse magnetic field have been investigated. 1.06 m, 8 ns pulses from a neodymium-doped yttrium aluminum garnet laser were used to create an aluminum plasma which was allowed to expand across a 0.64 T magnetic field. Fast photography, emission spectroscopy, and time of flight spectroscopy were used as diagnostic tools. Changes in plume structure and dynamics, enhanced emission and ionization, and velocity enhancement were observed in the presence of the magnetic field. Photographic studies showed that the plume is not fully stopped and diffuses across the field. The temperature of the plume was found to increase due to Joule heating and adiabatic compression. The time of flight studies showed that all of the species are slowed down significantly. A multiple peak temporal distribution was observed for neutral species.
Optical emission spectroscopic studies have been carried out on a tin plasma generated using 1064-nm, 8-ns pulses from a Nd:yttrium aluminum garnet laser. Temperature and density were estimated from the analysis of spectral data. The temperature measurements have been performed by Boltzmann diagram method using singly ionized Sn lines, while density measurements were made using the Stark broadening method. An initial temperature of 3.2 eV and density of 7.7×1017cm−3 were measured. Temporal and spatial behaviors of electron temperature and density in the laser-generated tin plasma have been analyzed. Time evolutions of density and temperature are found to decay adiabatically at early times. The spatial variation of density shows approximately 1∕z dependence. The time-integrated temperature exhibits an appreciable rise at distances greater than 7 mm. This may be caused by the deviation from local thermodynamic equilibrium at larger distances from the target surface.
Ablation plumes caused by short-pulse laser irradiation provide conditions which are well suited to the formation of nanoclusters. The high saturation ratios and presence of ionization lead to extraordinarily high nucleation rates and small critical radii. We have explored the homogeneous nucleation and heterogeneous growth of condensate from Si targets expanding into a low-pressure He ambient using a Nd:YAG laser with pulse length of 8 ns, wavelength of 532 nm and intensities in the range of 5¥10 7 to 5¥10 9 W/cm 2 . Clusters in the range of 5-50 nm have been produced. In the highly dynamic, non-linear regime of short-pulse laser-matter interactions, plume evolution and condensation processes are strongly coupled and difficult to predict accurately from modeling alone. Both numerical predictions and experimental results were used to quantify the competing effects of ionization and supersaturation. The results suggest a dominant influence of ionization for nearly all intensities above the ablation threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.