The human monoclonal antibody, mAb 2F5, has broad HIV-1 neutralizing activity and binds a conserved linear epitope within the envelope glycoprotein gp41 having a core recognition sequence ELDKWA. In this study, the structural requirements of this epitope for high-affinity binding to mAb 2F5 were explored using peptide synthesis and competitive enzyme-linked immunosorbant assay (ELISA). Expansion of the minimal epitope to an end-capped, linear nonapeptide, Ac-LELDKWASL-amide, was sufficient to attain maximal affinity within the set of native gp41-sequence peptides assayed. Scanning single-residue alanine and d-residue substitutions then confirmed the essential recognition requirements of 2F5 for the central DKW sequence, and also established the importance of the terminal leucine residues in determining high-affinity binding of the linear nonapeptide. Further studies of side-chain and backbone-modified analogs revealed a high degree of structural specificity for the DK sequence in particular, and delineated the steric requirements of the Leu(3) and Trp(6) residues. The nine-residue 2F5 epitope, flanked by pairs of serine residues, retained a high affinity for 2F5 when it was conformationally constrained as a 15-residue, disulfide-bridged loop. However, analogs with smaller or larger loop sizes resulted in lower 2F5 affinities. The conformational effects of the gp41 C-peptide helix immediately adjacent to the N-terminal end of the ELDKWA epitope were examined through the synthesis of helix-initiated analogs. Circular dichroism (CD) studies indicated that the alpha-helical conformation was propagated efficiently into the LELDKWASL epitope, but without any significant effect on its affinity for 2F5. This study should guide the design of a second generation of conformationally constrained ELDKWA analogs that might elicit an immune response that mimics the HIV-neutralizing actions of 2F5.
Isoproterenol hydrochloride (ISO), a beta adrenergic agonist, is known to cause ischemic necrosis in rats. Cardiotoxicity of three different doses of ISO were studied using physiological, biochemical and histopathological parameters. The effects of single and double dose of ISO were analysed, which illustrated that single ISO dose was more cardiotoxic than double ISO dose due to ischemic preconditioning. The tetrapeptide derivatives L-lysine-L-arginine-L-aspartic acid-L-serine (tetrapeptide A) and di-tert.butyloxycarbonyl-L-lysine-L-arginine-L-aspartic acid-tert.butyl O-tert.butyl-L-serinate (tetrapeptide B) along with acetylsalicylic acid as positive control were analysed at different time points for their cardioprotective effect. The results demonstrated that optimal protective effects were observed by pretreatment with 5 mg/kg of tetrapeptide B and this was found to be slightly better than that of acetylsalicylic acid. A lesser degree of cardioprotection was noticed when low doses of tetrapeptide B were administered. This study clearly showed that single dose of ISO (50 mg/kg, s.c.) induced myocardial necrosis could be used as a model to assess cardiovascular drugs and in this model, it was demonstrated that the tetrapeptide B could exhibit optimal cardioprotective effect.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.