A new approach to explain the interfacial polarization phenomenon in conducting composite films is proposed. HCl-doped poly(ethylene terephthalate) (PET) and polyamide-6 (PA-6) matrices with embedded polyaniline (PANI) particles as filler were investigated and analysed, combining dielectric spectroscopy and AFM electrical images with the effective medium theory analysis. Up to three relaxation peaks attributed to the interfacial polarization phenomena were detected in the studied frequency range (0.1 Hz–1 MHz). The AFM electrical images revealed that the doped PA-6/PANI composite can be modelled as a single-type particle medium and the PET/PANI one as a two-type particle medium. A simple dielectric loss expression was derived from the Maxwell–Wagner–Hanai mixture equation and was applied to the experimental data to identify the interfaces involved in each of the relaxation peaks. The parameter values (permittivity, conductivity, volume fraction of the PANI particles) were found to agree well with the measured one, hence validating the models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.