BackgroundIn contrast to placental neonates, in which all cranial bones are ossified, marsupial young have only the bones of the oral region and the exoccipital ossified at birth, in order to facilitate suckling at an early stage of development. In this study, we investigated whether this heterochronic shift in the timing of cranial ossification constrains cranial disparity in marsupials relative to placentals.MethodsWe collected three-dimensional (3D) landmark data about the crania of a wide range of extant placentals and marsupials, and from six fossil metatherians (the clade including extant marsupials and their stem relatives), using a laser scanner and a 3D digitizer. Principal components analysis and delta variance tests were used to investigate the distribution and disparity of cranial morphology between different landmark sets (optimizing either number of landmarks or number of taxa) of the whole skull and of individual developmental or functional regions (neurocranium, viscerocranium, oral region) for extant placentals and marsupials. Marsupial and placental data was also compared based on shared ecological aspects including diet, habitat, and time of peak activity.ResultsWe found that the extant marsupial taxa investigated here occupy a much smaller area of morphospace than the placental taxa, with a significantly (P<0.01) smaller overall variance. Inclusion of fossil taxa did not significantly increase the variance of metatherian cranial shape. Fossil forms generally plotted close to or within the realm of their extant marsupial relatives. When the disparities of cranial regions were investigated separately, significant differences between placentals and marsupials were seen for the viscerocranial and oral regions, but not for the neurocranial region.ConclusionThese results support the hypothesis of developmental constraint limiting the evolution of the marsupial skull, and further suggest that the marsupial viscerocranium as a whole, rather than just the early-ossifying oral region, is developmentally constrained.
Developmental constraints can have significant influence on the magnitude and direction of evolutionary change, and many studies have demonstrated that these effects are manifested on macroevolutionary scales. Phenotypic integration, or the strong interactions among traits, has been similarly invoked as a major influence on morphological variation, and many studies have demonstrated that trait integration changes through ontogeny, in many cases decreasing with age. Here, we unify these perspectives in a case study of the ontogeny of the mammalian cranium, focusing on a comparison between marsupials and placentals. Marsupials are born at an extremely altricial state, requiring, in most cases, the use of the forelimbs to climb to the pouch, and, in all cases, an extended period of continuous suckling, during which most of their development occurs. Previous work has shown that marsupials are less disparate in adult cranial form than are placentals, particularly in the oral apparatus, and in forelimb ontogeny and adult morphology, presumably due to functional selection pressures on these two systems during early postnatal development. Using phenotypic trajectory analysis to quantify prenatal and early postnatal cranial ontogeny in 10 species of therian mammals, we demonstrate that this pattern of limited variation is also apparent in the development of the oral apparatus of marsupials, relative to placentals, but not in the skull more generally. Combined with the observation that marsupials show extremely high integration of the oral apparatus in early postnatal ontogeny, while other cranial regions show similar levels of integration to that observed in placentals, we suggest that high integration may compound the effects of the functional constraints for continuous suckling to ultimately limit the ontogenetic and adult disparity of the marsupial oral apparatus throughout their evolutionary history.
Aim To link routinely collected health data to a cerebral palsy (CP) register in order to enable analysis of healthcare use by severity of CP. Method The Northern Ireland Cerebral Palsy Register was linked to hospital data. Data for those on the CP register born between 1st January 1981 and 31st December 2009 and alive in 2004 were extracted, forming a CP cohort (n=1684; 57% males, 43% females; aged 0–24y). Frequencies of healthcare events, and the reasons for them, were reported according to CP severity and compared with those without CP who had had at least one hospital attendance in Northern Ireland within the study period. Results Cases of CP represented 0.3% of the Northern Ireland population aged 0 to 24 years but accounted for 1.6% of hospital admissions and 1.6% of outpatient appointments. They had higher rates of elective admissions and multi‐day hospital stays than the general population. Respiratory conditions were the most common reason for emergency admissions. Those with most severe CP were 10 times more likely to be admitted, and four times more likely to attend outpatients, than those with mild CP. Interpretation Linkage between a register and routinely collected healthcare data provided a confirmed cohort of cases of CP that was sufficiently detailed to analyse healthcare use by disease severity.
Purpose: An observational study using routinely-collected health care data to describe the extent to which children and young people (CYP) with cerebral palsy (CP) can be identified and the prevalence of CP can be estimated. Patients and methods: Routinely-collected anonymized data, for CYP (aged 0–25 years old between 1 January 2004 and 31 December 2014) were analyzed in two linked datasets, from England and Wales respectively. Datasets included National Health Service; General Practitioner (GP), inpatients, outpatients, and national mortality records. CP was identified using ICD-10 codes G80.0–G83.3 and equivalent Read v2 codes. Ascertainment rates of CP were identified for each data source and compared between countries. Frequency and consistency of coding were investigated, and prevalence of CP estimated. Results: A total of 7,113 and 5,218 CYP with CP were identified in the English and Welsh datasets respectively. Whilst the majority of CYP with CP would be expected to attend their GP, 65.3% (4,646/7,113) of English and 65.1% (3,396/5,218) of Welsh cases were ascertained from GP datasets. Further cases were identified solely in inpatient datasets (2,410 in England, 1,813 in Wales). Few cases were coded for CP within outpatient datasets. Four character codes that specified CP type were rarely used; one in five health care records were coded both with G80 codes (explicitly CP) and with G81–83 codes (other paralytic syndromes) or equivalent Read codes. Estimated period prevalence of CYP with CP was 2.5–3.4 per 1,000 in England and 2.4–3.2 per 1,000 in Wales. Conclusion: In England and Wales, coding of CP in routine data is infrequent, inconsistent, non-specific, and difficult to isolate from conditions with similar physical signs. Yet the prevalence estimates of CP were similar to those reported elsewhere. To optimize case recognition we recommend improved coding quality and the use of both primary and secondary care datasets as a minimum.
Quantitative analysis of morphology allows for identification of subtle evolutionary patterns or convergences in anatomy that can aid ecological reconstructions of extinct taxa. This study explores diversity and convergence in cranial morphology across living and fossil primates using geometric morphometrics. 33 3D landmarks were gathered from 34 genera of euprimates (382 specimens), including the Eocene adapiforms Adapis and Leptadapis and Quaternary lemurs Archaeolemur, Palaeopropithecus, and Megaladapis. Landmark data was treated with Procrustes superimposition to remove all nonshape differences and then subjected to principal components analysis and linear discriminant function analysis. Haplorhines and strepsirrhines were well separated in morphospace along the major components of variation, largely reflecting differences in relative skull length and width and facial depth. Most adapiforms fell within or close to strepsirrhine space, while Quaternary lemurs deviated from extant strepsirrhines, either exploring new regions of morphospace or converging on haplorhines. Fossil taxa significantly increased the area of morphospace occupied by strepsirrhines. However, recent haplorhines showed significantly greater cranial disparity than strepsirrhines, even with the inclusion of the unusual Quaternary lemurs, demonstrating that differences in primate cranial disparity are likely real and not simply an artefact of recent megafaunal extinctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.