We demonstrate a semiconducting material, TiO 2−δ , with ferromagnetism up to 880 K, without the introduction of magnetic ions. The magnetism in these films stems from the controlled introduction of anion defects from both the filmsubstrate interface as well as processing under an oxygen-deficient atmosphere. The room-temperature carriers are n-type with n ∼ 3 × 10 17 cm −3 . The density of spins is ∼10 21 cm −3 . Magnetism scales with conductivity, suggesting that a double exchange interaction is active. This represents a new approach in the design and refinement of magnetic semiconductor materials for spintronics device applications.(Some figures in this article are in colour only in the electronic version)Recent research efforts on the growth of magnetically ordered semiconductor materials [1,2] have received great attention because of potential new applications in spintronics devices [3]. The rationale for this optimism is the plausibility of integrating properties of both magnetic and semiconductor materials in new devices [1] (e.g. spin diodes [3-6] and spin-FETs [7]). Recent research has focused on dilute magnetic semiconductors (DMS) which were synthesized by introducing magnetic ions (e.g. Mn, Co, Fe, and etc) into conventional III-V [1, 2] and II-VI type semiconductors [8,9] or wide bandgap semiconductors including ZnO and TiO 2 [8][9][10][11][12][13]. Also, ferromagnetism was induced in films of hafnium dioxide, HfO 2 , deposited by pulsed laser deposition (PLD) on sapphire substrates and attributed to defect doping [10][11][12]. Bulk HfO 2 is intrinsically non-magnetic and electrically insulating. This report has created intense
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m 3 . Consisting of Co 3 C and Co 2 C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.2
Next generation magnetic microwave devices require ferrite films to be thick ͑Ͼ300 m͒, self-biased ͑high remanent magnetization͒, and low loss in the microwave and millimeter wave bands. Here we examine recent advances in the processing of thick Ba-hexaferrite ͑M-type͒ films using pulsed laser deposition ͑PLD͒, liquid-phase epitaxy, and screen printing. These techniques are compared and contrasted as to their suitability for microwave materials processing and industrial production. Recent advances include the PLD growth of BaM on wide-band-gap semiconductor substrates and the development of thick, self-biased, low-loss BaM films by screen printing.
Hexagonal BaFe12O19 ferrite films, having thicknesses ranging from 200–500μm, were prepared by a screen printing process followed by sintering heat treatments. Structural, magnetic, and microwave measurements confirmed that the polycrystalline films were suitable for applications in self-biasing microwave devices in that they exhibited a large remanence (4πMr=3800G), high hysteresis loop squareness (Mr∕Ms=0.96) and low microwave loss. A derivative linewidth ΔH of 310 Oe was measured at 55.6 GHz. This represents the lowest ΔH measured in polycrystalline hexaferrite materials. ΔH can be further improved by reducing porosity and improving the c-axis orientation of grains in polycrystalline ferrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.