A coupled field‐scale aquifer pumping and water infiltration test was conducted at the Idaho National Engineering and Environmental Laboratory in order to evaluate subsurface water and contaminant transport processes in a heterogeneous flow system. The test included an aquifer pumping test to determine the storage properties of the aquifer and the state of confinement of the aquifer (∼190 m below land surface), and a vadose zone infiltration test to determine vertical moisture and radioactive tracer migration rates. Pump test results indicated that the Snake River Plain Aquifer was locally unconfined with a transmissivity ranging from 5.57 × 105 to 9.29 × 104 m2day. Moisture monitoring with neutron probes indicated that infiltrating water was initially transported vertically through the upper basalt layer of the vadose zone, primarily through fractures and rubble zones, at an average rate of 5 m/day (based on vertical distance traveled and first arrival of water at the monitoring points). Analysis of breakthrough curves for a conservative tracer allowed estimation of the arrival of the peak concentration and yielded an average velocity of 1 m/day. The migration velocities from the neutron probe and tracer tests are in good agreement given the scale of the test and difference in analysis techniques. None of the data sets showed a correlation between migration velocity (arrival time) and distance from the point source, but they strongly indicate preferential flow through discrete fractures. Upon reaching the first continuous sedimentary interbed layer in the basalt formation, water flow was diverted laterally along the interbed surface where it spread outward in primarily three areas corresponding to topographic lows on the interbed surface, and slowly infiltrated into the interbed. The nonpredictable movement of water and tracer through specific fractures underlying the site suggests that a priori prediction of trans‐missive fractures in this media is not possible. Results do suggest that the continuous sedimentary interbed layers, in general, impede vertical water flow and contaminant migration.
Predictive ground‐water flow modeling may be simplified by application of superposition when the governing equations are linear. The simplification allows evaluation of impacts of individual aquifer stresses and minimized model input, output, and interpretation. Modeling is performed by using (1) boundary conditions and aquifer properties provided by previous calibrations or analytical techniques, (2) setting the initial potentiometric surface and prescribed‐head boundaries to an arbitrary horizontal datum, and (3) simulating a specific recharge or discharge stress. Superposition was applied to an existing, calibrated model of the Snake River Plain aquifer to simplify prediction of changes in interaction with the Snake River. Simulations predict the temporal relationships between ground‐water use at multiple locations within the Snake River Plain and surface‐water depletion in four hydraulically connected reaches of the Snake River. Simulated aquifer water use at a location approximately five miles from a hydraulically connected river reach results in river depletions greater than 80% of the pumping rate after 10 years. Water use further than 50 miles from hydraulically connected river reaches results in depletions from 10 to 30% of the annual average pumping rate after 100 years. Results present spatial and temporal impacts of water uses on the Plain that are conceptually and quantitatively beneficial to water resources planners and water users.
The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutronactivated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods-direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes-to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail.This report provides an update describing the current status of the test and documents results to date. Data from the one-year and threeyear results are also included, for comparison and evaluation of trends.In the 6-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of "no reportable" to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in the performance assessment for the SDA.The corrosion on the carbon steel, beryllium, and aluminum were more evident with a clear difference in corrosion performance between the 4-ft and 10-ft levels. Notable surface corrosion products were evident as well as numerous pit initiation sites. Since the corrosion of the beryllium and aluminum is characterized by pitting, the geometrical character of the corrosion becomes more significant than the general corrosion rate. Both pitting factor and weight loss data should be used together. For 6-year exposure, the maximum carbon steel corrosion rate was 0.3643 MPY while the maximum beryllium corrosion rate was 0.3282 MPY and the maximum aluminum corrosion rate was 0.0030 MPY.ii (This page is intentionally left blank.)iii ACKNOWLEDGMENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.