The environmental backdrop to the evolution and spread of early Homo sapiens in East Africa is known mainly from isolated outcrops and distant marine sediment cores. Here we present results from new scientific drill cores from Lake Malawi, the first long and continuous, high-fidelity records of tropical climate change from the continent itself. Our record shows periods of severe aridity between 135 and 75 thousand years (kyr) ago, when the lake's water volume was reduced by at least 95%. Surprisingly, these intervals of pronounced tropical African aridity in the early latePleistocene were much more severe than the Last Glacial Maximum (LGM), the period previously recognized as one of the most arid of the Quaternary. From these cores and from records from Lakes Tanganyika (East Africa) and Bosumtwi (West Africa), we document a major rise in water levels and a shift to more humid conditions over much of tropical Africa after Ϸ70 kyr ago. This transition to wetter, more stable conditions coincides with diminished orbital eccentricity, and a reduction in precession-dominated climatic extremes. The observed climate mode switch to decreased environmental variability is consistent with terrestrial and marine records from in and around tropical Africa, but our records provide evidence for dramatically wetter conditions after 70 kyr ago. Such climate change may have stimulated the expansion and migrations of early modern human populations.human origins ͉ Lake Malawi ͉ paleoclimate ͉ Pleistocene
[1] Cenozoic biostratigraphic, cosmogenic isotope, magnetostratigraphic, and cyclostratigraphic data derived from Integrated Ocean Drilling Program Expedition 302, the Arctic Coring Expedition (ACEX), are merged into a coherent age model. This age model has low resolution because of poor core recovery, limited availability of biostratigraphic information, and the complex nature of the magnetostratigraphic record. One 2.2 Ma long hiatus occurs in the late Miocene; another spans 26 Ma (18.2-44.4 Ma). The average sedimentation rate in the recovered Cenozoic sediments is about 15 m/Ma. Core-seismic correlation links the ACEX sediments to the reflection seismic stratigraphy of line AWI-91090, on which the ACEX sites were drilled. This seismostratigraphy can be correlated over wide geographic areas in the central Arctic Ocean, implying that the ACEX age model can be extended well beyond the drill sites.
[1] Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolution of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record ''glacial'' and ''interglacial'' modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.