Dried dairy ingredients are utilized in various food and beverage applications for their nutritional, functional, and sensory properties. Dried dairy ingredients include milk powders of varying fat content and heat treatment and buttermilk powder, along with both milk and whey proteins of varying protein contents. The flavor of these ingredients is the most important characteristic that determines consumer acceptance of the ingredient applications. Lipid oxidation is the main mechanism for off-flavor development in dried dairy ingredients. The effects of various unit operations on the flavor of dried dairy ingredients have been investigated. Recent research documented that increased surface free fat in spray dried WPC80 was associated with increased lipid oxidation and off-flavors. Surface free fat in spray-dried products is fat on the surface of the powder that is not emulsified. The most common emulsifiers present in dried dairy ingredients are proteins and phospholipids. Currently, only an association between surface free fat and lipid oxidation has been presented. The link between surface free fat in dried dairy ingredients and flavor and flavor stability has not been investigated. In this review, some hypotheses for the role of surface free fat on the flavor of dried dairy ingredients are presented along with proposed mechanisms.Keywords: dairy powders, flavor, free fat, lipid oxidation, spray drying Practical Application: Dried dairy ingredients are utilized in various food and beverage applications for their nutritional, functional, and sensory properties. Lipid oxidation is the main mechanism for off-flavor development in dried dairy ingredients, and the distribution of fat may play a critical role in flavor and flavor stability. Some hypotheses for the role of surface free fat on the flavor of dried dairy ingredients are presented along with proposed mechanisms.
Previous research has shown that bleaching affects flavor and functionality of whey proteins. The role of different bleaching agents on vitamin and carotenoid degradation is unknown. The objective of this study was to determine the effects of bleaching whey with traditional annatto (norbixin) by hydrogen peroxide (HP), benzoyl peroxide (BP), or native lactoperoxidase (LP) on vitamin and carotenoid degradation in spray-dried whey protein concentrate 80% protein (WPC80). An alternative colorant was also evaluated. Cheddar whey colored with annatto (15 mL/454 L of milk) was manufactured, pasteurized, and fat separated and then assigned to bleaching treatments of 250 mg/kg HP, 50 mg/kg BP, or 20 mg/kg HP (LP system) at 50°C for 1 h. In addition to a control (whey with norbixin, whey from cheese milk with an alternative colorant (AltC) was evaluated. The control and AltC wheys were also heated to 50°C for 1 h. Wheys were concentrated to 80% protein by ultrafiltration and spray dried. The experiment was replicated in triplicate. Samples were taken after initial milk pasteurization, initial whey formation, after fat separation, after whey pasteurization, after bleaching, and after spray drying for vitamin and carotenoid analyses. Concentrations of retinol, a-tocopherol, water-soluble vitamins, norbixin, and other carotenoids were determined by HPLC, and volatile compounds were measured by gas chromatography-mass spectrometry. Sensory attributes of the rehydrated WPC80 were documented by a trained panel. After chemical or enzymatic bleaching, WPC80 displayed 7.0 to 33.3% reductions in retinol, β-carotene, ascorbic acid, thiamin, α-carotene, and α-tocopherol. The WPC80 bleached with BP contained significantly less of these compounds than the HP- or LP-bleached WPC80. Riboflavin, pantothenic acid, pyridoxine, nicotinic acid, and cobalamin concentrations in fluid whey were not affected by bleaching. Fat-soluble vitamins were reduced in all wheys by more than 90% following curd formation and fat separation. With the exception of cobalamin and ascorbic acid, water-soluble vitamins were reduced by less than 20% throughout processing. Norbixin destruction, volatile compound, and sensory results were consistent with previous studies on bleached WPC80. The WPC80 colored with AltC had a similar sensory profile, volatile compound profile, and vitamin concentration as the control WPC80.
Norbixin is the water-soluble carotenoid in annatto extracts used in the cheese industry to color Cheddar cheese. The purpose of norbixin is to provide cheese color, but norbixin is also present in the whey stream and contaminates dried dairy ingredients. Regulatory restrictions dictate that norbixin cannot be present in dairy ingredients destined for infant formula or ingredients entering different international markets. Thus, there is a need for the detection and quantification of norbixin at very low levels in dried dairy ingredients to confirm its absence. A rapid method for norbixin evaluation exists, but it does not have the sensitivity required to confirm norbixin absence at very low levels in compliance with existing regulations. The current method has a limit of detection of 2.7 μg/kg and a limit of quantification of 3.5 μg/kg. The purpose of this study was to develop a method to extract and concentrate norbixin for quantification in dried dairy ingredients below 1 μg/kg (1 ppb). A reverse-phase solid-phase extraction column step was applied in the new method to concentrate and quantify norbixin from liquid and dried WPC80 (whey protein concentrate with 80% protein), WPC34 (WPC, 34% protein), permeate, and lactose. Samples were evaluated by both methods for comparison. The established method was able to quantify norbixin in whey proteins and permeates (9.39 μg/kg to 2.35 mg/kg) but was unable to detect norbixin in suspect powdered lactose samples. The newly developed method had similar performance to the established method for whey proteins and permeates but was also able to detect norbixin in powdered lactose samples. The proposed method had a >90% recovery in lactose samples and a limit of detection of 28 ppt (ng/kg) and a limit of quantification of 94 ppt (ng/kg). The developed method provides detection and quantification of norbixin for dairy ingredients that have a concentration of <1 ppb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.