Background:Evidences have shown that the RAS signalling pathway plays an important role in colorectal cancer (CRC). Moreover, RAS-GTPase-activating proteins (RASGAPs) as RAS signalling terminators are associated with tumourigenicity and tumour progression. In this study, we used bioinformatics analysis to predict and study important miRNAs that could target RAS p21 GTPase-activating protein 1 (RASA1), an important member of RASGAPs.Methods:The levels of RASA1 and miR-223 were analysed by real-time PCR, western blotting or in situ immunofluorescence analyses. The functional effects of miR-223 and the effects of miR-223-targeted inhibitors were examined in vivo using established assays.Results:Upregulation of miR-223 was detected in CRC tissues (P<0.01) and was involved in downregulation of RASA1 in CRC tissues. Furthermore, the direct inhibition of RASA1 translation by miR-223 and the activation of miR-223 by CCAAT/enhancer binding protein-β (C/EBP-β) were evaluated in CRC cells. An in vivo xenograft model of CRC suggested that the upregulation of miR-223 could promote tumour growth and that the inhibition of miR-223 might prevent solid tumour growth.Conclusions:These results identify that C/EBP-β-activated miR-223 contributes to tumour growth by targeting RASA1 in CRC and miR-223-targeted inhibitors may have clinical promise for CRC treatment via suppression of miR-223.
A search for the decays of the Higgs and Z bosons to a ϕ meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb^{-1} collected at sqrt[s]=13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to ϕγ of 1.4×10^{-3} and 8.3×10^{-6}, respectively, are obtained.
Oxaliplatin is commonly used in managing malignancy, including colorectal cancer. While treatment often fails due to decreased drug sensitivity, the mechanisms involved are not clear. In this study, we investigate how exosomal miR-19b participates in oxaliplatin sensitivity and then prove that miR-19b down-regulates oxaliplatin sensitivity of sw480 cells. We found that suppressing the secretion of exosomal miR-19b with gw4869 promotes sw480 cell oxaliplatin sensitivity. Our combined results demonstrate for the first time that miR-19b regulates the oxaliplatin sensitivity of sw480 cells and provides a unique mechanism mediated by gw4869 to modulate oxaliplatin sensitivity by suppressing exosomal miR-19b release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.