QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiberproducing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. MOST naturally occurring genetic variation in populations reflects polymorphic alleles that individually have relatively small effects but collectively result in continuous variation among members of the population. Through genetic mapping, the number and location of loci associated with complex trait variation, i.e., quantitative trait loci or QTL, can be estimated and used to infer the genetic basis of traits that differ between varieties and/or species (Paterson et al. 1988). DNA markers linked to QTL can also be used as diagnostic tools in the selection of desirable genotypes (markerassisted selection) and as a starting point for cloning of QTL. For these reasons, vast numbers of QTL representing a myriad of traits have been mapped in agronomically important crops, and also in botanical models and animals. A handful of genes underlying QTL have been cloned (e.g., Frary et al. 2000) based largely on fine mapping (Paterson et al. 1990).A recurring complication in the use of QTL data is that different parental combinations and/or experiments conducted in different environments often result in identification of partly or wholly nonoverlapping sets of QTL. The majority of such differences in the QTL landscape are presumed to be due to environment sensitivity of genes. The use of stringent statistical thresholds to infer QTL while controlling experiment-wise error rates (Lander and Botstein 1989;Churchill and Doerge 1994) implies that only a small fraction of these nonoverlapping QTL can be attributed to falsepositive results. Small QTL wit...
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton ( Gossypium hirsutum L.) and Pima or Egyptian cotton ( G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned 19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.
.— Experimental advanced‐generation backcross populations contain individuals with genomic compositions similar to those resulting from interspecific hybridization in nature. By applying a detailed restriction fragment length polymorphism (RFLP) map to 3662 BC3F2 plants derived from 24 different BC1 individuals of a cross between Gossypium hirsutum and G. barbadense, large and widespread deficiencies of donor (G. barbadense) chromatin were found, and seven independent chromosomal regions were entirely absent. This skewed chromatin transmission is best accounted for by multilocus epistatic interactions affecting chromatin transmission. The observed frequencies of two‐locus genotypes were significantly different from Mendelian expectations about 26 times more often than could be explained by chance (P≤ 0.01). For identical pairs of loci, different two‐locus genotypes occurred in excess in different BC3 families, implying the existence of higher‐order interlocus interactions beyond the resolution of these data. Some G. barbadense markers occurred more frequently than expected by chance, indicating that genomic interactions do not always favor host chromatin. A preponderance of interspecific allelic interactions involved one locus each in the two different subgenomes of (allotetraploid) Gossypium, thus supporting several other lines of evidence suggesting that intersubgenomic interactions contribute to unique features that distinguish tetraploid cotton from its diploid ancestors.
Lint yield and fiber quality in upland cotton, Gossypium hirsutum L., are interrelated through a series of individual components such as fiber length and the number of fibers produced on each seed. Numerous studies have reported the relationships among various components of yield and yield per unit land area, but none have reported on the relationships among the most basic within‐boll yield components and fiber quality parameters. The objectives of this study were (i) to determine the association of fiber quality parameters with basic within‐boll yield components for six diverse cotton genotypes and (ii) to determine if repulsion phase linkage explained the high negative correlations reported among fiber quality parameters and lint yield. The second objective was investigated by comparing the associations of fiber length, strength, and micronaire with within‐boll yield components among selected F1 populations developed by mating parents with similar direction of general combining ability (GCA) for fiber quality and within‐boll lint yield components with selected F1 populations derived by mating parents with dissimilar direction of GCA. Parents and F1s were grown at College Station, TX, in 1989 and 1992. Fiber quality parameters were determined by high volume instrumentation. Within‐boll lint yield components were determined by direct measurement or through calculations. Fiber strength and length were negatively associated with the most basic within‐boll lint yield components. Repulsion phase linkage appears to play a role in the negative association of fiber quality and within‐boll lint yield but pleiotropic effects could not be ruled out.
The current study is the first installment of an effort to explore the secondary gene pool for the enhancement of Upland cotton (Gossypium hirsutum L.) germplasm. We developed advanced-generation backcross populations by first crossing G. hirsutum cv. Tamcot 2111 and G. barbadense cv. Pima S6, then independently backcrossing F(1) plants to the G. hirsutum parent for three cycles. Genome-wide mapping revealed introgressed alleles at an average of 7.3% of loci in each BC(3)F(1) plant, collectively representing G. barbadense introgression over about 70% of the genome. Twenty-four BC(3)F(1) plants were selfed to generate 24 BC(3)F(2) families of 22-172 plants per family (totaling 2,976 plants), which were field-tested for fiber elongation and genetically mapped. One-way analysis of variance detected 22 non-overlapping quantitative trail loci (QTLs) distributed over 15 different chromosomes. The percentage of variance explained by individual loci ranged from 8% to 28%. Although the G. barbadense parent has lower fiber elongation than the G. hirsutum parent, the G. barbadense allele contributed to increased fiber elongation at 64% of the QTLs. Two-way analysis of variance detected significant (P<0.001) among-family genotype effects and genotypexfamily interactions in two and eight regions, respectively, suggesting that the phenotypic effects of some introgressed chromosomal segments are dependent upon the presence/absence of other chromosomal segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.