We present in this paper a novel, semiautomated image-analysis software to streamline the quantitative analysis of root growth and architecture of complex root systems. The software combines a vectorial representation of root objects with a powerful tracing algorithm that accommodates a wide range of image sources and quality. The root system is treated as a collection of roots (possibly connected) that are individually represented as parsimonious sets of connected segments. Pixel coordinates and gray level are therefore turned into intuitive biological attributes such as segment diameter and orientation as well as distance to any other segment or topological position. As a consequence, user interaction and data analysis directly operate on biological entities (roots) and are not hampered by the spatially discrete, pixel-based nature of the original image. The software supports a sampling-based analysis of root system images, in which detailed information is collected on a limited number of roots selected by the user according to specific research requirements. The use of the software is illustrated with a time-lapse analysis of cluster root formation in lupin (Lupinus albus) and an architectural analysis of the maize (Zea mays) root system. The software, SmartRoot, is an operating system-independent freeware based on ImageJ and relies on cross-platform standards for communication with data-analysis software.
QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiberproducing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. MOST naturally occurring genetic variation in populations reflects polymorphic alleles that individually have relatively small effects but collectively result in continuous variation among members of the population. Through genetic mapping, the number and location of loci associated with complex trait variation, i.e., quantitative trait loci or QTL, can be estimated and used to infer the genetic basis of traits that differ between varieties and/or species (Paterson et al. 1988). DNA markers linked to QTL can also be used as diagnostic tools in the selection of desirable genotypes (markerassisted selection) and as a starting point for cloning of QTL. For these reasons, vast numbers of QTL representing a myriad of traits have been mapped in agronomically important crops, and also in botanical models and animals. A handful of genes underlying QTL have been cloned (e.g., Frary et al. 2000) based largely on fine mapping (Paterson et al. 1990).A recurring complication in the use of QTL data is that different parental combinations and/or experiments conducted in different environments often result in identification of partly or wholly nonoverlapping sets of QTL. The majority of such differences in the QTL landscape are presumed to be due to environment sensitivity of genes. The use of stringent statistical thresholds to infer QTL while controlling experiment-wise error rates (Lander and Botstein 1989;Churchill and Doerge 1994) implies that only a small fraction of these nonoverlapping QTL can be attributed to falsepositive results. Small QTL wit...
Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years 3 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.With climate changes, crops will be subjected to more frequent episodes of drought and high temperature that may threaten food security (IPCC, 2014). Reducing the impacts of these effects is an urgent priority that (not exclusively) involves the genetic progress of plant performance under heat and drought stresses (Tester and Langridge, 2010;Lobell et al., 2011). Because hundreds of new genotypes of most cereals are commercialized every year, a generic approach is needed to avoid an endless series of experiments assessing the performances of the newly released genotypes. A systematic exploration of the natural genetic diversity used in breeding can provide information usable for large groups of genotypes. This entails the identification, among the thousands of accessions existing in gene banks, of allelic variants exhibiting specific adaptation traits by addressing three questions: (1) Is there a genetic variability for yield and related traits in dry and hot environments? (2) Can this genetic variability be dissected into the effect of genomic regions (quantitative trait loci, QTLs), and (3) have these genomic
BackgroundRecent years have seen an increase in methods for plant phenotyping using image analyses. These methods require new software solutions for data extraction and treatment. These solutions are instrumental in supporting various research pipelines, ranging from the localisation of cellular compounds to the quantification of tree canopies. However, due to the variety of existing tools and the lack of central repository, it is challenging for researchers to identify the software that is best suited for their research.ResultsWe present an online, manually curated, database referencing more than 90 plant image analysis software solutions. The website, plant-image-analysis.org, presents each software in a uniform and concise manner enabling users to identify the available solutions for their experimental needs. The website also enables user feedback, evaluations and new software submissions.ConclusionsThe plant-image-analysis.org database provides an overview of existing plant image analysis software. The aim of such a toolbox is to help users to find solutions, and to provide developers a way to exchange and communicate about their work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.