A precision mass investigation of the neutron-rich titanium isotopes 51−55 Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure and the overall uncertainties of the 52−55 Ti mass values were significantly reduced. Our results conclusively establish the existence of weak shell effect at N = 32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITAN's Penning trap mass spectrometer.Atomic nuclei are highly complex quantum objects made of protons and neutrons. Despite the arduous efforts needed to disentangle specific effects from their many-body nature, the fine understanding of their structures provides key information to our knowledge of fundamental nuclear forces. One notable quantum behavior of bound nuclear matter is the formation of shell-like structures for each fermion group [1], as electrons do in atoms. Unlike for atomic shells, however, nuclear shells are known to vanish or move altogether as the number of protons or neutrons in the system changes [2]. Particular attention has been given to the emergence of strong shell effects among nuclides with 32 neutrons, pictured in a shell model framework as a full valence ν2p 3/2 orbital. Across most of the known nuclear chart, this orbital is energetically close to ν1f 5/2 , which prevents the appearance of shell signatures in energy observables. However, the excitation energies of the lowest 2 + states show a relative, but systematic, local increase below proton number Z = 24 [3]. This effect, characteristic of shell closures, has been attributed in shell model calculations to the weakening of attractive proton-neutron interactions between the ν1f 5/2 and π1f 7/2 orbitals as the latter empties, making the neutrons in the former orbital less bound [4,5]. Ab initio calculations are also extending their reach over this sector of the nuclear chart, yet no systematic investigation of the N = 32 isotones has been produced so far.
We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around 2.7906-2.7914 neV=c 2 to g aγ < 1 × 10 −11 GeV −1 . This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and coupling range which is not constrained by astrophysical observations. Our approach can be extended to many other Penning-trap experiments and has the potential to provide broad limits in the low ALP mass range.
Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enables energy exchange over a distance of 9 cm. We also demonstrate the cooling of a resonant mode of a macroscopic LC circuit with laser-cooled ions and sympathetic cooling of an individually trapped proton, reaching temperatures far below the environmental temperature. Notably, as this technique uses only image–current interactions, it can be easily applied to an experiment with antiprotons1, facilitating improved precision in matter–antimatter comparisons11 and dark matter searches12,13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.