Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Selection of the right drug for the right patient is a promising approach to increase clinical benefit of targeted therapy with monoclonal antibodies (mAbs). Assessment of in vivo biodistribution and tumor targeting of mAbs to predict toxicity and efficacy is expected to guide individualized treatment and drug development. Molecular imaging with positron emission tomography (PET) using zirconium-89 (89Zr)-labeled monoclonal antibodies also known as 89Zr-immuno-PET, visualizes and quantifies uptake of radiolabeled mAbs. This technique provides a potential imaging biomarker to assess target expression, as well as tumor targeting of mAbs. In this review we summarize results from initial clinical trials with 89Zr-immuno-PET in oncology and discuss technical aspects of trial design. In clinical trials with 89Zr-immuno-PET two requirements should be met for each 89Zr-labeled mAb to realize its full potential. One requirement is that the biodistribution of the 89Zr-labeled mAb (imaging dose) reflects the biodistribution of the drug during treatment (therapeutic dose). Another requirement is that tumor uptake of 89Zr-mAb on PET is primarily driven by specific, antigen-mediated, tumor targeting. Initial trials have contributed toward the development of 89Zr-immuno-PET as an imaging biomarker by showing correlation between uptake of 89Zr-labeled mAbs on PET and target expression levels in biopsies. These results indicate that 89Zr-immuno-PET reflects specific, antigen-mediated binding. 89Zr-immuno-PET was shown to predict toxicity of RIT, but thus far results indicating that toxicity of mAbs or mAb-drug conjugate treatment can be predicted are lacking. So far, one study has shown that molecular imaging combined with early response assessment is able to predict response to treatment with the antibody-drug conjugate trastuzumab-emtansine, in patients with human epithelial growth factor-2 (HER2)-positive breast cancer. Future studies would benefit from a standardized criterion to define positive tumor uptake, possibly supported by quantitative analysis, and validated by linking imaging data with corresponding clinical outcome. Taken together, these results encourage further studies to develop 89Zr-immuno-PET as a predictive imaging biomarker to guide individualized treatment, as well as for potential application in drug development.
Background
The onset of the COVID-19 pandemic forced the Dutch national screening program to a halt and increased the burden on health care services, necessitating the introduction of specific breast cancer treatment recommendations from week 12 of 2020. We aimed to investigate the impact of COVID-19 on the diagnosis, stage and initial treatment of breast cancer.
Methods
Women included in the Netherlands Cancer Registry and diagnosed during four periods in weeks 2–17 of 2020 were compared with reference data from 2018/2019 (averaged). Weekly incidence was calculated by age group and tumor stage. The number of women receiving initial treatment within 3 months of diagnosis was calculated by period, initial treatment, age, and stage. Initial treatment, stratified by tumor behavior (ductal carcinoma in situ [DCIS] or invasive), was analyzed by logistic regression and adjusted for age, socioeconomic status, stage, subtype, and region. Factors influencing time to treatment were analyzed by Cox regression.
Results
Incidence declined across all age groups and tumor stages (except stage IV) from 2018/2019 to 2020, particularly for DCIS and stage I disease (p < 0.05). DCIS was less likely to be treated within 3 months (odds ratio [OR]wks2–8: 2.04, ORwks9–11: 2.18). Invasive tumors were less likely to be treated initially by mastectomy with immediate reconstruction (ORwks12–13: 0.52) or by breast conserving surgery (ORwks14–17: 0.75). Chemotherapy was less likely for tumors diagnosed in the beginning of the study period (ORwks9–11: 0.59, ORwks12–13: 0.66), but more likely for those diagnosed at the end (ORwks14–17: 1.31). Primary hormonal treatment was more common (ORwks2–8: 1.23, ORwks9–11: 1.92, ORwks12–13: 3.01). Only women diagnosed in weeks 2–8 of 2020 experienced treatment delays.
Conclusion
The incidence of breast cancer fell in early 2020, and treatment approaches adapted rapidly. Clarification is needed on how this has affected stage migration and outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.