ObjectiveCare for severely injured patients requires multidisciplinary teamwork. A decrease in the number of accident victims ultimately affects the routine and skills. PHTLS (“Pre-Hospital Trauma Life Support”) courses are established two-day courses for medical and non-medical rescue service personnel, aimed at improving the pre-hospital care of trauma patients worldwide. The study aims the examination of the quality of documentation before and after PHTLS courses as a surrogate endpoint of training effectiveness and awareness.MethodsThis was a prospective pre-post intervention trial and was part of the mixed-method longitudinal EPPTC (Effect of Paramedic Training on Pre-Hospital Trauma Care) study, evaluating subjective and objective changes among participants and real patient care, as a result of PHTLS courses. The courses provide an overview of the SAMPLE approach for interrogation of anamnestic information, which is believed to be responsible for patient safety as relevant, among others, “Allergies,” “Medication,” and “Patient History” (AMP). The focus of the course is not the documentation.ResultsIn total, 320 protocols were analyzed before and after the training. The PHTLS course led to a significant increase (p < 0.001) in the “AMP” information in the documentation. The subgroups analysis of “allergies” (+47.2%), “drugs” (+38.1%), and “medical history” (+27.8%) before and after the PHTLS course showed a significant increase in the information content.ConclusionIn summary, we showed that PHTLS training improves documentation quality, which we used as a surrogate endpoint for learning effectiveness and awareness. In this regard, we demonstrated that participants use certain parts of training in real life, thereby suggesting that the learning methods of PHTLS training are effective. These results, however, do not indicate whether patient care has changed.
No abstract
Background For the investigation of the biomechanical properties of bone, various testing devices have been described. However, only a limited number have been developed to test the vertebral body of small animals. The aim of this study was to develop and validate a new bone testing device, which investigates the different biomechanical properties in small-animal vertebrae as a whole, three-dimensional unit, respecting its anatomical structure. Methods Thirty-five twelve-week-old female Sprague Dawley rats were utilized. Group 1 was composed of 17 rats with a normal bone metabolism without osteoporosis, while Group 2 consisted of 18 rats with manifest osteoporosis, 8 weeks after ovariectomy. The 5th lumbar vertebra of each animal was tested using the new bone testing device. This device has the ability to be adjusted to the slanted nature of each individual vertebral body and fix the vertebra in a natural position to allow for a non-dislocating axial force application. The device is designed to respect the anatomical three-dimensional shape of the vertebral body, thus avoiding the application of non-anatomic, non-physiological forces and thus preventing a distortion of the biomechanical testing results. The parameters investigated were stiffness, yield load, maximum load and failure load, and the results were compared to current literature values. Results The conduction of the biomechanical bone testing of the vertebral bodies with the new device was conductible without any instances of dislocation of the vertebrae or machine malfunctions. Significant differences were found for stiffness, maximum load and failure load between groups, with a lower value in the osteoporotic rats in each parameter tested. The yield load was also lower in the osteoporotic group, however not significantly. The values achieved correlate with those in current literature. Conclusions This study demonstrates that the newly developed testing machine is easy to handle and produces valid data sets for testing biomechanical bone parameters of whole vertebral bodies in an established small animal model. Therefore, it can be utilized, also as reference data, to test different structural properties and changes in vertebral bone, for example, in different metabolic settings or under the influence of different pharmaceutical entities in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.