BackgroundBiomechanical testing is an essential component of bone research. In order to test the metaphyseal region of long bones, a typical location for the nowadays increasing field of osteoporotic bone changes, three-point bending and breaking test devices are suitable and widely used. The aim of our study was to increase the effectiveness of this method by using a newly developed ball-mounted platform design. This new design eliminates the negative effects of friction, present in previous studies, caused by the lengthening of the distal tibia along its diaphyseal axis while sliding over the surface of a fixed aluminum block.Methods70 tibiae of 35 twelve week old, female Sprague Dawley rats were separated into two groups for a metaphyseal bending/breaking test. Group 1 was made up of the rat’s right tibiae, Group 2 of the left tibiae. Group 1 was tested on a solid metal block according to previously established testing devices whereas Group 2 was tested on the newly designed device: the resistance-free gliding, ball-mounted platform. Stiffness (N/mm), yield Load (N), and failure Load (N) were registered. In the evaluation of both testing procedures, the results of the right and left tibiae were compared according to the rat they originated from.ResultsStiffness (S) showed highly significant differences (p = 0.002) with 202.25 ± 27.010 N/mm SD (Group 1) and 184.66 ± 35.875 N/mm SD (Group 2). Yield Load (yL) showed highly significant differences (p < 0.001) with 55.31 ± 13.074 N SD (Group1) and 37.17 ± 12.464 N SD (Group2). The mean failure Load (fL) did not differ significantly (p < 0.231) between Group 1: 81.34 ± 11.972 N SD and Group 2: 79.63 ± 10.345 N SD.ConclusionsWe therefore conclude that, used in the three-point bending/breaking test, the mobile, ball-mounted platform device is able to efficiently eliminate the influence of friction in terms of stiffness and yield load. Failure Load was not affected. We suggest that the new ball-mounted platform device, when compared to other existing techniques, generates more accurate test results when used in the three-point bending/breaking test of the metaphysis of long bones.
Background For the investigation of the biomechanical properties of bone, various testing devices have been described. However, only a limited number have been developed to test the vertebral body of small animals. The aim of this study was to develop and validate a new bone testing device, which investigates the different biomechanical properties in small-animal vertebrae as a whole, three-dimensional unit, respecting its anatomical structure. Methods Thirty-five twelve-week-old female Sprague Dawley rats were utilized. Group 1 was composed of 17 rats with a normal bone metabolism without osteoporosis, while Group 2 consisted of 18 rats with manifest osteoporosis, 8 weeks after ovariectomy. The 5th lumbar vertebra of each animal was tested using the new bone testing device. This device has the ability to be adjusted to the slanted nature of each individual vertebral body and fix the vertebra in a natural position to allow for a non-dislocating axial force application. The device is designed to respect the anatomical three-dimensional shape of the vertebral body, thus avoiding the application of non-anatomic, non-physiological forces and thus preventing a distortion of the biomechanical testing results. The parameters investigated were stiffness, yield load, maximum load and failure load, and the results were compared to current literature values. Results The conduction of the biomechanical bone testing of the vertebral bodies with the new device was conductible without any instances of dislocation of the vertebrae or machine malfunctions. Significant differences were found for stiffness, maximum load and failure load between groups, with a lower value in the osteoporotic rats in each parameter tested. The yield load was also lower in the osteoporotic group, however not significantly. The values achieved correlate with those in current literature. Conclusions This study demonstrates that the newly developed testing machine is easy to handle and produces valid data sets for testing biomechanical bone parameters of whole vertebral bodies in an established small animal model. Therefore, it can be utilized, also as reference data, to test different structural properties and changes in vertebral bone, for example, in different metabolic settings or under the influence of different pharmaceutical entities in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.