The brain is generally considered immunoprivileged, although increasing examples of immunological responses to brain antigens, neuronal expression of major histocompatibility class I genes, and neurological autoimmunity have been recognized. An adeno-associated virus (AAV) vaccine generated autoantibodies that targeted a specific brain protein, the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor. After peroral administration of the AAV vaccine, transgene expression persisted for at least 5 months and was associated with a robust humoral response in the absence of a significant cell-mediated response. This single-dose vaccine was associated with strong anti-epileptic and neuroprotective activity in rats for both a kainate-induced seizure model and also a middle cerebral artery occlusion stroke model at 1 to 5 months following vaccination. Thus, a vaccination strategy targeting brain proteins is feasible and may have therapeutic potential for neurological disorders.
Recombinant adeno-associated viruses (rAAV) are highly efficient vectors for gene delivery into the central nervous system (CNS). However, host inflammatory and immune responses may play a critical role in limiting the use of rAAV vectors for gene therapy and functional genomic studies in vivo. Here, we evaluated the effect of repeated injections of five rAAV vectors expressing different genetic sequences (coding or noncoding) in a range of combinations into the rat brain. Specifically, we wished to determine whether a specific immune or inflammatory response appeared in response to the vector and/or the transgene protein after repeated injections under conditions of mannitol coinjection. We show that readministration of the same rAAV to the CNS is possible if the interval between the first and second injection is more than 4 weeks. Furthermore, our data demonstrate that rAAV vectors carrying different genetic sequences can be administered at intervals of 2 weeks. Our data therefore suggest that the AAV capsid structure is altered by the vector genetic sequence, such that secondary structures of the single-stranded genome have an impact on the antigenicity of the virus. This study provides guidelines for more rational design of gene transfer studies in the rodent brain and, in addition, suggests the use of repeated administration of rAAV as a viable form of therapy for the treatment of chronic diseases.
Aspartoacylase metabolizes N-acetylaspartic acid to produce L-aspartate and acetate. An aspartoacylase deficiency in humans is responsible for Canavan disease, a lethal autosomal recessive leukodystrophy. The role of aspartoacylase in the mammalian brain is unclear. Here we have generated and characterized a highly specific polyclonal antibody against aspartoacylase which recognizes a 37 kDa monomer and a dimer in normal but not in aspartoacylase-deficient rat tissue. Aspartoacylase protein expression sharply increases at P14, peaks at P28 and plateaus thereafter. Biochemical analysis reveals immunoreactivity in cytosolic but not in membrane fractions. Histologically, most abundant expression was observed in white matter tracts and thalamus. On the cellular level, aspartoacylase immunoreactivity is restricted to oligodendrocyte somata in both white and gray matter.
Canavan disease is an early onset leukodystrophy associated with psychomotor retardation, seizures, and premature death. This disorder is caused by mutations in the gene encoding the enzyme aspartoacylase (ASPA). Normally, ASPA is enriched in oligodendrocytes and ASPA deficiency results in elevated levels of its substrate molecule, N-acetylaspartate (NAA), brain edema, and dysmyelination. Using adeno-associated virus, we permanently expressed ASPA in CNS neurons of the tremor rat, a genetic model of Canavan disease, and examined the efficacy of the treatment by monitoring NAA metabolism, myelination, motor behavior, and seizures. Assessment of ASPA protein and enzyme activity in whole brain hemispheres showed restoration to normal levels as long as 6 months after treatment. This finding correlated with a reduction of NAA levels, along with a rescue of the seizure phenotype. However, gross brain pathology, such as dilated ventricles and spongiform vacuolization, was unchanged. Moreover, hypomyelination and motor deficits were not resolved by ASPA gene transfer. Our data suggest that NAA-mediated neuronal hyperexcitation but not oligodendrocyte dysfunction can be compensated for by neuronal ASPA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.