Recombinant adeno-associated viruses (rAAV) are highly efficient vectors for gene delivery into the central nervous system (CNS). However, host inflammatory and immune responses may play a critical role in limiting the use of rAAV vectors for gene therapy and functional genomic studies in vivo. Here, we evaluated the effect of repeated injections of five rAAV vectors expressing different genetic sequences (coding or noncoding) in a range of combinations into the rat brain. Specifically, we wished to determine whether a specific immune or inflammatory response appeared in response to the vector and/or the transgene protein after repeated injections under conditions of mannitol coinjection. We show that readministration of the same rAAV to the CNS is possible if the interval between the first and second injection is more than 4 weeks. Furthermore, our data demonstrate that rAAV vectors carrying different genetic sequences can be administered at intervals of 2 weeks. Our data therefore suggest that the AAV capsid structure is altered by the vector genetic sequence, such that secondary structures of the single-stranded genome have an impact on the antigenicity of the virus. This study provides guidelines for more rational design of gene transfer studies in the rodent brain and, in addition, suggests the use of repeated administration of rAAV as a viable form of therapy for the treatment of chronic diseases.
Aspartoacylase metabolizes N-acetylaspartic acid to produce L-aspartate and acetate. An aspartoacylase deficiency in humans is responsible for Canavan disease, a lethal autosomal recessive leukodystrophy. The role of aspartoacylase in the mammalian brain is unclear. Here we have generated and characterized a highly specific polyclonal antibody against aspartoacylase which recognizes a 37 kDa monomer and a dimer in normal but not in aspartoacylase-deficient rat tissue. Aspartoacylase protein expression sharply increases at P14, peaks at P28 and plateaus thereafter. Biochemical analysis reveals immunoreactivity in cytosolic but not in membrane fractions. Histologically, most abundant expression was observed in white matter tracts and thalamus. On the cellular level, aspartoacylase immunoreactivity is restricted to oligodendrocyte somata in both white and gray matter.
Despite an extensive research on the molecular basis of epilepsy, the essential players in the epileptogenic process leading to epilepsy are not known. Gene expression analysis is one strategy to enhance our understanding of the genes contributing to the functional neuronal changes underlying epileptogenesis. In the present study, we used the novel MPSS (massively parallel signature sequencing) method for analysis of gene expression in the rat kindling model of temporal lobe epilepsy. Kindling by repeated electrical stimulation of the amygdala resulted in the differential expression of 264 genes in the hippocampus compared to sham controls. The most strongly induced gene was Homer 1A, an immediate early gene involved in the modulation of glutamate receptor function. The overexpression of Homer 1A in the hippocampus of kindled rats was confirmed by RT-PCR. In order to evaluate the functional implications of Homer 1A overexpression for kindling, we used transgenic mice that permanently overexpress Homer 1A. Immunohistochemical characterization of these mice showed a marked Homer 1A overexpression in glutamatergic neurons of the hippocampus. Kindling of Homer 1A overexpressing mice resulted in a retardation of seizure generalization compared to wild-type controls. The data demonstrate that kindling-induced epileptogenesis leads to a striking overexpression of Homer 1A in the hippocampus, which may represent an intrinsic antiepileptogenic and anticonvulsant mechanism in the course of epileptogenesis that counteracts progression of the disease.
Canavan disease is an early onset leukodystrophy associated with psychomotor retardation, seizures, and premature death. This disorder is caused by mutations in the gene encoding the enzyme aspartoacylase (ASPA). Normally, ASPA is enriched in oligodendrocytes and ASPA deficiency results in elevated levels of its substrate molecule, N-acetylaspartate (NAA), brain edema, and dysmyelination. Using adeno-associated virus, we permanently expressed ASPA in CNS neurons of the tremor rat, a genetic model of Canavan disease, and examined the efficacy of the treatment by monitoring NAA metabolism, myelination, motor behavior, and seizures. Assessment of ASPA protein and enzyme activity in whole brain hemispheres showed restoration to normal levels as long as 6 months after treatment. This finding correlated with a reduction of NAA levels, along with a rescue of the seizure phenotype. However, gross brain pathology, such as dilated ventricles and spongiform vacuolization, was unchanged. Moreover, hypomyelination and motor deficits were not resolved by ASPA gene transfer. Our data suggest that NAA-mediated neuronal hyperexcitation but not oligodendrocyte dysfunction can be compensated for by neuronal ASPA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.