Apolipoprotein E is associated with age-related risk for Alzheimer's disease and plays critical roles in Aβ homeostasis. We report that ApoE plays a previously unappreciated role in facilitating the proteolytic clearance of soluble Aβ from the brain. The endolytic degradation of Aβ peptides within microglia by neprilysin and related enzymes is dramatically enhanced by ApoE. Similarly, Aβ degradation extracellularly by insulin degrading enzyme is facilitated by ApoE. The capacity of ApoE to promote Aβ degradation is dependent upon the ApoE isoform and its lipidation status. The enhanced expression of lipidated ApoE, through the activation of liver X receptors, stimulates Aβ degradation. Indeed, aged Tg2576 mice treated with the LXR agonist GW3965 exhibited a dramatic reduction in brain Aβ load. GW3965 treatment also reversed contextual memory deficits. These data demonstrate a novel mechanism through which ApoE facilitates the clearance of Aβ from the brain and suggest that LXR agonists may represent a novel therapy for AD. Alzheimer's disease (AD) is characterized by the accumulation and deposition of Aβ peptides within the brain, leading to the perturbation of synaptic function and neuronal loss that typifies the disease (Tanzi and Bertram, 2005). Genetic analysis of familial forms of AD has established the centrality of APP processing and Aβ production to disease pathogenesis. Aβ peptides are normally produced by neurons in the brain and cleared through efflux into the peripheral Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Background: Intracellular A degradation is enhanced in the presence of apoE. Results: Lowering cellular cholesterol levels facilitates intracellular trafficking of A to lysosomes and enhances its degradation. Conversely, increasing cholesterol levels retards the delivery and inhibits degradation of A.
Conclusion:The cholesterol efflux function of apoE mediates its ability to promote A degradation. Significance: We demonstrate a direct role for cholesterol in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.