Apolipoprotein E is associated with age-related risk for Alzheimer's disease and plays critical roles in Aβ homeostasis. We report that ApoE plays a previously unappreciated role in facilitating the proteolytic clearance of soluble Aβ from the brain. The endolytic degradation of Aβ peptides within microglia by neprilysin and related enzymes is dramatically enhanced by ApoE. Similarly, Aβ degradation extracellularly by insulin degrading enzyme is facilitated by ApoE. The capacity of ApoE to promote Aβ degradation is dependent upon the ApoE isoform and its lipidation status. The enhanced expression of lipidated ApoE, through the activation of liver X receptors, stimulates Aβ degradation. Indeed, aged Tg2576 mice treated with the LXR agonist GW3965 exhibited a dramatic reduction in brain Aβ load. GW3965 treatment also reversed contextual memory deficits. These data demonstrate a novel mechanism through which ApoE facilitates the clearance of Aβ from the brain and suggest that LXR agonists may represent a novel therapy for AD. Alzheimer's disease (AD) is characterized by the accumulation and deposition of Aβ peptides within the brain, leading to the perturbation of synaptic function and neuronal loss that typifies the disease (Tanzi and Bertram, 2005). Genetic analysis of familial forms of AD has established the centrality of APP processing and Aβ production to disease pathogenesis. Aβ peptides are normally produced by neurons in the brain and cleared through efflux into the peripheral Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been reported to reduce the risk of Alzheimer disease. We have shown previously that statins inhibit a -amyloid (A)-mediated inflammatory response through mechanisms independent of cholesterol reduction. Specifically, statins exert anti-inflammatory actions through their ability to prevent the isoprenylation of members of the Rho family of small G-proteins, resulting in the functional inactivation of these G-proteins. We report that statin treatment of microglia results in perturbation of the cytoskeleton and morphological changes due to alteration in Rho family function. Statins also block A-stimulated phagocytosis through inhibition of Rac action. Paradoxically, the statin-mediated inactivation of G-protein function was associated with increased GTP loading of Rac and RhoA, and this effect was observed in myeloid lineage cells and other cell types. Statin treatment disrupted the interaction of Rac with its negative regulator the Rho guanine nucleotide dissociation inhibitor (RhoGDI), an interaction that is dependent on protein isoprenylation. We propose that lack of negative regulation accounts for the increased GTP loading. Isoprenylation of Rac is also required for efficient interaction with the plasma membrane, and we report that statin treatment dramatically reduces the capacity of Rac to interact with membranes. These results suggest a mechanism by which statins inhibit the actions of Rho GTPases and attenuate A-stimulated inflammation.
Epidemiological evidence suggests that long term treatment with hydroxymethylglutaryl-CoA reductase inhibitors, or statins, decreases the risk for developing Alzheimer disease (AD). However, statin-mediated AD protection cannot be fully explained by reduction of cholesterol levels. In addition to their cholesterol lowering effects, statins have pleiotropic actions and act to lower the concentrations of isoprenoid intermediates, such as geranylgeranyl pyrophosphate and farnesyl pyrophosphate. The Rho and Rab family small G-proteins require addition of these isoprenyl moieties at their C termini for normal GTPase function. In neuroblastoma cell lines, treatment with statins inhibits the membrane localization of Rho and Rab proteins at statin doses as low as 200 nM, without affecting cellular cholesterol levels. In addition, we show for the first time that at low, physiologically relevant, doses statins preferentially inhibit the isoprenylation of a subset of GTPases. The amyloid precursor protein (APP) is proteolytically cleaved to generate -amyloid (A), which is the major component of senile plaques found in AD. We show that inhibition of protein isoprenylation by statins causes the accumulation of APP within the cell through inhibition of Rab family proteins involved in vesicular trafficking. Moreover, inhibition of Rho family protein function reduces levels of APP C-terminal fragments due to enhanced lysosomal dependent degradation. Statin inhibition of protein isoprenylation results in decreased A secretion. In summary, we show that statins selectively inhibit GTPase isoprenylation at clinically relevant doses, leading to reduced A production in an isoprenoid-dependent manner. These studies provide insight into the mechanisms by which statins may reduce AD pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.