Epidemiological evidence suggests that long term treatment with hydroxymethylglutaryl-CoA reductase inhibitors, or statins, decreases the risk for developing Alzheimer disease (AD). However, statin-mediated AD protection cannot be fully explained by reduction of cholesterol levels. In addition to their cholesterol lowering effects, statins have pleiotropic actions and act to lower the concentrations of isoprenoid intermediates, such as geranylgeranyl pyrophosphate and farnesyl pyrophosphate. The Rho and Rab family small G-proteins require addition of these isoprenyl moieties at their C termini for normal GTPase function. In neuroblastoma cell lines, treatment with statins inhibits the membrane localization of Rho and Rab proteins at statin doses as low as 200 nM, without affecting cellular cholesterol levels. In addition, we show for the first time that at low, physiologically relevant, doses statins preferentially inhibit the isoprenylation of a subset of GTPases. The amyloid precursor protein (APP) is proteolytically cleaved to generate -amyloid (A), which is the major component of senile plaques found in AD. We show that inhibition of protein isoprenylation by statins causes the accumulation of APP within the cell through inhibition of Rab family proteins involved in vesicular trafficking. Moreover, inhibition of Rho family protein function reduces levels of APP C-terminal fragments due to enhanced lysosomal dependent degradation. Statin inhibition of protein isoprenylation results in decreased A secretion. In summary, we show that statins selectively inhibit GTPase isoprenylation at clinically relevant doses, leading to reduced A production in an isoprenoid-dependent manner. These studies provide insight into the mechanisms by which statins may reduce AD pathogenesis.
Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasisform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1d following denervation, CD11c+ cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7d and a 30% decrease in CD4+ T cell numbers by 10d. Restoration of SP signaling in denervated KC-Tie2 skin prevented decreases in CD11c+ and CD4+ cells but had no affect on acanthosis; restoration of CGRP signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4+ cells. Under innervated conditions, small molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c+ and CD4+ cell numbers; whereas small molecule inhibition of CGRP resulted in significant reductions in CD4+ cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T cell infiltration and acanthosis and introduce targeting nerve-immunocyte/keratinocyte interactions as potential psoriasis therapeutic treatment strategies.
Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSA sT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult Ubc CreERT2; ROSA sT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult Ubc CreERT2; ROSA sT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1 CreERT2/+; ROSA sT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1 CreERT2/+; ROSA sT and Atoh1 CreERT2/+; ROSA sT; p53f lox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.