Tree whitewash has the functions of parasite prevention and cold protection and is therefore commonly used in the maintenance and management of trees. At present, tree whitewash mainly relies on manual operation, which has the problems of low efficiency, poor quality, and uneven distribution of the whitewash agent. To address this issue, this study developed a smart tree whitewash device based on human–computer interaction. The device was controlled mainly by a programmable logic controller (PLC). Once the trunk information collected by sensors was received by the PLC, it would control the up and down motions of the ball screw to manipulate the mechanical arm for whitewash. In addition, a Mitsubishi GT12 touch screen was adopted to facilitate system operation. Subsequently, a whitewash experiment was performed on poplar trunks with lengths of 10–35 cm using three different whitewash devices, i.e., a backpack sprayer, a semi-automatic tree sprayer, and the proposed smart tree whitewash device; the efficiency and the amount of whitewash agents used were compared. The results suggested that as the tree diameter at breast height increased, the amount of required whitewash agent elevated accordingly. In this case, the time required by the backpack sprayer and the semiautomatic tree sprayer to complete the job both increased, whereas that required by the smart tree whitewash device remained almost identical. In terms of work efficiency, the time required by the smart whitewash device to whitewash a tree was 109.89 s, which was approximately 1/2 of the time required by the backpack sprayer or 2/3 of that required by the semiautomatic tree spraying device. Meanwhile, the amount of whitewash agent required by the smart whitewash device to whitewash a tree was 140.23 g, which was approximately 0.46 of the amount required by the backpack sprayer or 0.74 of that required by the semiautomatic tree spraying device. Therefore, it was concluded that the proposed smart tree whitewash device could not only improve the work efficiency of tree whitewash but also greatly reduce the amount of whitewash agent required, thereby decreasing the cost and minimising environmental pollution. This study provides theoretical guidance and technical support for future research on smart tree whitewash devices.
The associative effects resulting from the proportions of neutral detergent fibre (NDF) and non fibre carbohydrate (NFC) were explored and assessed by in vitro gas production . Total mixed rations (TMR) composed primarily of alf a lfa and corn soybean concentrate were fed to growing cashmere goats. Treatments were defined by three proportions of NFC and NDF namely 2.00 ( TMR1), 2.35 ( TMR2), and 3.00 ( that were used to grow cashmere goats , and these TRMs were incubated for 48 h ours to evaluate their influence on associative effects. The results indicated that the associative influences of these treatments on gas production occurred within the cultures predominantly at 2 8 hours, and disappeared gradually as culture time was ex tended . TMR 2 and TMR3 incubation increased gas production compared with that observed in the other groups at all incubation times P > 0.05), and these groups exhibited positive associative effects, particularly during the early hours of incubation P <0.05 )). TMR 3 displayed the best associative effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.